
- •Введение в дискретный анализ
- •Глава 1. Введение в теорию множеств
- •Тема 1.1. Множества и операции над ними
- •1.1.1. Основные понятия
- •1.1.2. Операции над множествами
- •1.1.3. Векторы и прямые произведения
- •Вопросы для повторения
- •Резюме по теме
- •Тема 1.2. Отношения
- •1.2.1. Основные понятия и определения
- •1.2.2. Бинарные отношения. Основные определения
- •1.2.4. Эквивалентность и порядок
- •Вопросы для повторения
- •Резюме по теме
- •Тема 1.3. Соответствия и функции
- •1.3.1. Соответствия и их свойства
- •1.3.2. Взаимно однозначные соответствия и мощности множеств
- •1.3.3. Функции и отображения
- •1.3.4. Операции
- •1.3.5. Гомоморфизмы и изоморфизмы
- •Вопросы для повторения
- •Резюме по теме
- •Глава 2. Математическая логика
- •Тема 2.1. Логика высказываний
- •2.1.1. Логические связки
- •2.1.2. Основные схемы логически правильных рассуждений
- •2.2.2. Булева алгебра
- •2.2.3. Эквивалентные преобразования
- •Вопросы для повторения
- •Резюме по теме
- •Тема 2.3. Полнота и замкнутость
- •2.3.1. Функционально полные системы
- •2.3.2. Алгебра Жегалкина и линейные функции
- •2.3.3. Замкнутые классы и монотонные функции
- •2.3.4. Теоремы о функциональной полноте
- •Вопросы для повторения
- •Резюме по теме
- •Тема 2.4. Нечеткая логика
- •2.4.1. Основные понятия теории нечетких множеств
- •2.4.2. Логические операции над нечеткими множествами
- •2.4.3. Свойства логических операций над нечеткими множествами
- •Вопросы для повторения
- •Резюме по теме
- •Тема 2.5. Нечеткие модели управления
- •2.5.1. Нечеткие операторы
- •2.5.2. Нечеткая и лингвистическая переменные
- •2.5.3. Нечеткий логический вывод
- •Вопросы для повторения
- •Резюме по теме
- •Тема 2.6. Логика предикатов
- •2.6.1. Предикаты. Основные понятия
- •2.6.2. Кванторы
- •2.6.3. Выполнимость и истинность
- •2.6.4. Эквивалентные соотношения. Префиксная нормальная форма
- •Вопросы для повторения
- •Резюме по теме
- •Глава 3. Комбинаторика
- •Тема 3.1. Комбинаторные конфигурации
- •3.1.1. Принципы сложения и умножения
- •3.1.2. Перестановки
- •3.1.3. Размещения
- •3.1.4. Сочетания
- •3.2.2. Полиномиальная формула
- •3.2.3. Формула включений и исключений
- •Вопросы для повторения
- •Резюме по теме
- •Глава 4. Теория графов
- •Тема 4.1. Основные понятия и операции на графах
- •4.1.1. Основные понятия
- •4.1.2. Способы задания графов
- •4.1.3. Операции над частями графа. Графы и бинарные отношения
- •Вопросы для повторения
- •Резюме по теме
- •Тема 4.2. Маршруты и деревья
- •4.2.1. Маршруты, пути, цепи, циклы
- •4.2.2. Дерево и лес
- •5.1.2. Способы задания автоматов
- •5.1.3. Взаимосвязь между моделями Мили и Мура
- •Вопросы для повторения
- •Резюме по теме
- •Тема 5.2. Детерминированные конечные автоматы
- •5.2.1.Основные понятия детерминированных конечных автоматов
- •5.2.2. Схема доказательства правильности конечного автомата
- •5.2.3. Произведение автоматов
- •5.3.2. Детерминизация нка
- •Вопросы для повторения
- •Резюме по теме
Вопросы для повторения
1.Что такое предикат?
2.В чем отличие булевой логики от предикатной?
3.Для чего необходимы кванторы?
4.В каком случае используется квантор существования?
5.Когда формула является выполнимой в определенной области?
6.Когда формула называется тождественно истинной в определенной области?
7.Дайте определение модели логики предикатов?
8.Приведите примеры эквивалентных соотношений?
9.Каким образом предикатную формулу приводят к префиксной нормальной форме?
Резюме по теме
Дано понятие предиката с точки зрения альтернативы логическим функциям булевой алгебры. Показан н-местный предикат. Выявлены кванторы общности и существования. Приведены примеры выполнимости и истинности формул. Рассмотрено понятие модели логики предикатов. Выявлены элементарные соотношения, позволяющие преобразовывать предикатные формулы в зависимости от необходимости, а так же показано приведение предикатной формулы к префиксной нормальной форме.
Глава 3. Комбинаторика
Термин "комбинаторика" был введён в математический обиход знаменитым Готфрид Вильгельм Лейбницем.
В 1666 году Лейбниц
опубликовал "Рассуждения о комбинаторном
искусстве". В своём сочинении Лейбниц,
вводя специальные символы, термины для
подмножеств и операций над ними находит
все k
-сочетания из n
элементов выводит свойства сочетаний:
.
Строит таблицы сочетаний до n=k=12, после чего рассуждает о приложениях комбинаторики к логике, арифметике, к проблемам стихосложения и др.
Комбинаторику он понимал весьма широко, именно, как составляющую любого исследования, любого творческого акта, предполагающего сначала анализ (расчленение целого на части), а затем синтез (соединение частей в целое). Мечтой Лейбница, оставшейся, увы, неосуществлённой, оставалось построение общей комбинаторной теории.
В XVIII веке к решению комбинаторных задач обращались выдающиеся математики. Так, Леонард Эйлер рассматривал задачи о разбиении чисел, о паросочетаниях, о циклических расстановках, о построении магических и латинских квадратов.
В 1713 году было опубликовано сочинение Я. Бернулли "Искусство предположений", в котором с достаточной полнотой были изложены известные к тому времени комбинаторные факты. Сочинение состояло из 4 частей, комбинаторике была посвящена вторая часть, в которой содержатся формулы:
для числа перестановок из n элементов,
для числа сочетаний (называемого Я. Бернулли классовым числом) без повторений и с повторениями,
для числа размещений с повторениями и без повторений.
Для вывода формул автор использовал наиболее простые и наглядные методы, сопровождая их многочисленными таблицами и примерами. В математике в XIX веке появился сначала термин "геометрическая конфигурация" в лекциях по проективной геометрии профессора университета в Страсбурге К.Т. Рейе (1882).
В 1896 году американский математик Элиаким Гастингс Мур (1862-1932) ввёл термин тактическая конфигурация в статье "Tactical memoranda", понимая под этим термином систему n множеств, содержащих, соответственно, a1, a2, … , an элементов. Тактическую конфигурацию Мур задаёт квадратной матрицей порядка n, в которой элемент aкк, стоящий на главной диагонали, равен числу aк (числу элементов в k-ом множестве); элемент aij (i j) равен числу элементов i-ого множества, инцидентных j -ому множеству. К тактическим конфигурациям Мур относит сочетания, размещения, системы решений задачи Киркмана о 15 школьницах, подгруппы некоторых групп. Он демонстрирует широкий спектр задач из геометрии, теории групп, которые приводят к тактическим разложениям или используют тактические разложения. Мур обогатил список известных комбинаторных конфигураций построением новых, обобщающих системы троек Штейнера, и системы троек Киркмана.
Термин "тактика" ввёл в математику английский математик Джеймс Джозеф Сильвестр в 1861 году. Сильвестр определял тактику как раздел математики, изучающий расположение элементов друг относительно друга. В сфере этого раздела находится, по мнению Сильвестра, теория групп, комбинаторный анализ и теория чисел.
Комбинаторика, пройдя многовековой путь развития, обретя собственные методы исследования, с одной стороны, широко используется при решении задач алгебры, геометрии, анализа, с другой стороны, сама использует геометрические, аналитические и алгебраические методы исследования. В конце XVIII века учёные, принадлежащие комбинаторной школе Гинденбурга, попытались построить общую комбинаторную теорию, используя бесконечные ряды. Исследователи этой школы изучили большое количество преобразований рядов: умножение, деление, возведение в степень, извлечение корней, обращение рядов, разложение трансцендентных функций. Использование производящих функций в комбинаторике можно отнести к (уже) классическим традициям.
В XX веке комбинаторика подверглась мощному процессу алгебраизации благодаря работам Дж.-К. Рота (1964), а затем Р. Стенли. Изучение ими частично упорядоченных множеств, свойств функции Мёбиуса, абстрактных свойств линейной зависимости, выявление их роли при решении комбинаторных задач способствовали обогащению комбинаторных методов исследования и дальнейшей интеграции комбинаторики в современную математику.
Комбинаторика — раздел математики, изучающий дискретные объекты, множества (сочетания, перестановки, размещения и перечисление элементов) и отношения на них (например, частичного порядка). Комбинаторика связана со многими другими областями математики - алгеброй, геометрией, теорией вероятности, и имеет широкий спектр применения, например в информатике и статистической физике.
Перечислительная комбинаторика (или исчисляющая комбинаторика) рассматривает задачи о перечислении или подсчёте количества различных конфигураций (например, перестановок) образуемых элементами конечных множеств, на которые могут накладываться определенные ограничения, такие как: различимость или неразличимость элементов, возможность повторения одинаковых элементов и т.п.
Структурная комбинаторика. К данному разделу относятся некоторые вопросы теории графов, а также теории матроидов.
Экстремальная комбинаторика. Примером этого раздела может служить следующая задача: какова наибольшая размерность графа, удовлетворяющего определенным свойствам.
Вероятностая комбинаторика - этот раздел отвечает на вопросы вида: какова вероятность присутствия определенного свойства у заданного множества.
Топологическая комбинаторика. Аналоги комбинаторных концепций и методов используются и в топологии, при изучении дерева принятия решений, частично упорядоченных множеств, раскрасок графа и др.