
- •1.Предмет курса «Концепции современного естествознания» и социальные функции естественных наук.
- •2.Две науки:естественнонаучная и гуманитарная.
- •5.Наука,религия и философия;естественнонаучное,философское и религиозное мировоззрение.
- •8.Классификация естественных наук.
- •10.Эмпирический и теоретический уровни естествознания,их специфика,роль в научном познании и взаимосвязь.Эмпиризм и рационализм.
- •11.Классификация методов естествознания и их роль в познании.
- •12.Формы естественнонаучного познания:факт,проблема,идея,гипотеза,теория.
- •15.Картины мира и стиль научного мышления.
- •16.Науки в Античности.
- •21.Предпосылки становления классической науки и научной модели природы.
- •5. Галилео Галилей и его роль в становлении классической науки
- •6. И. Ньютон и его роль в становлении классической науки
- •22.Особенности механистической картины,ее значение для развития науки и историческое место.
- •23.Предпосылки неклассического естествознания,революция в естествознании конца XIX-начала XX.
- •24.Социокультурные,философско-методологические и естественнонаучные основы неклассической модели мира.
- •25.Основные принципы и содержание неклассической картины мира.
- •28.Структурные уровни и виды материи.
- •29.Движение-способ существования материи.Основные формы движения материи и их взаимосвязь.Механизм,редукционизм,энергетизм.
- •30.Пространство и время,пространственно-временной континуум.
- •31.Корпускулярная и континуальная концепции описания природы.
- •33.Концепции и взгляды на структуру Метагалактики.
- •38.Взаимосвязь и взаимообусловленность явлений природы,типы взаимодействия.
- •40.Самоорганизация и эволюция материального мира.
- •42.Днамические и статистические закономерности в природе.
- •45.Принципы относительности,дополнительности,соответствия.
- •46.Принципы универсального эволюционизма.
- •49.Концепции возникновения и развития жизни на Земле.
- •52.Синтетическая теория эволюции и коэволюции.
- •54.Концепции происхождения человека.
- •56.Учение о ноосфере.
- •60.Человек в свете синергетики,кибернетики и физики.Проблема моделирования человека и его сознания.
- •62.Постнеклассический этап современной науки.
- •64.Научные революции 20в,наука и научно-техническая революции 2-ой половины 20-начала 21в.
- •67.Научная этика,биоэтика.
45.Принципы относительности,дополнительности,соответствия.
При́нцип относи́тельности — фундаментальный физический принцип, согласно которому все физические процессы в инерциальных системах отсчёта протекают одинаково, независимо от того, неподвижна ли система или она находится в состоянии равномерного и прямолинейного движения. Отсюда следует, что все законы природы одинаковы во всех инерциальных системах отсчёта.[1] Различают принцип относительности Эйнштейна (который приведён выше) и принцип относительности Галилея, который утверждает то же самое, но не для всех законов природы, а только для законов классической механики, подразумевая применимость преобразований Галилея, оставляя открытым вопрос о применимости принципа относительности к оптике и электродинамике. В современной литературе принцип относительности в его применении к инерциальным системам отсчета (чаще всего при отсутствии гравитации или при пренебрежении ею) обычно выступает терминологически как лоренц-ковариантность (или лоренц-инвариантность).
При́нцип
соотве́тствия
— в методологии
науки
утверждение, что любая новая научная
теория
при наличии старой, хорошо проверенной
теории находится с ней не в полном
противоречии, а даёт те же следствия в
некотором предельном
приближении (частном случае). Например,
закон
Бойля-Мариотта
является частным случаем уравнения
состояния идеального газа
в приближении постоянной температуры;
кислоты
и основания Аррениуса
являются частным случаем кислот
и оснований Льюиса
и т.п. В специальной
теории относительности
в пределе малых скоростей
получаются
те же следствия, что и в классической
механике.
Так, преобразования
Лоренца
переходят в преобразования
Галилея,
время
течёт одинаково во всех системах
отсчёта,
кинетическая энергия становится равной
и
т.д. В квантовой
механике
принципом соответствия называется
утверждение о том, что поведение
квантовомеханической системы стремится
к классической физике в пределе больших
квантовых
чисел.
Этот принцип ввёл Нильс
Бор
в 1923
году.Правила квантовой механики очень
успешно применяются в описании
микроскопических объектов, типа атомов
и элементарных
частиц.
С другой стороны, эксперименты
показывают, что разнообразные
макроскопические системы (пружина,
конденсатор
и т.д) можно достаточно точно описать в
соответствии с классическими теориями,
используя классическую
механику
и классическую
электродинамику.
Принцип дополнительности — один из важнейших принципов квантовой механики, сформулированный в 1927 году Нильсом Бором. Согласно этому принципу, для полного описания квантовомеханических явлений необходимо применять два взаимоисключающих («дополнительных») набора классических понятий, совокупность которых даёт исчерпывающую информацию об этих явлениях как о целостных. Например, дополнительными в квантовой механике являются пространственно-временная и энергетически-импульсная картины. Принцип дополнительности лёг в основу так называемой копенгагенской интерпретации квантовой механики и анализа процесса измерения характеристик микрообъектов. Согласно этой интерпретации, заимствованные из классической физики динамические характеристики микрочастицы (её координата, импульс, энергия и др.) вовсе не присущи частице самой по себе. Смысл и определённое значение той или иной характеристики электрона, например, его импульса, раскрываются во взаимосвязи с классическими объектами, для которых эти величины имеют определённый смысл и все одновременно могут иметь определённое значение (такой классический объект условно называется измерительным прибором). Роль принципа дополнительности оказалась столь существенной, что Паули даже предлагал назвать квантовую механику «теорией дополнительности» по аналогии с теорией относительности