
- •Происхождение и условия образования твердых горючих полезных ископаемых
- •2.Стадии преобразования органических остатков.
- •4. Необходимые предпосылки для углеобразования.
- •5. Классификация углей по химическому составу и технологическим свойствам.
- •6. Метаморфизм углей.
- •7. Свойства углей: макроскопические, технические, элементный анализ.
- •8. Состав и строение угленосных формаций.
- •9. Эпохи углеобразования и краткая характеристика важнейших угольных бассейнов
- •Основные закономерности распространения углей на Земле
- •Угленосные провинции и бассейны: классификация угленосных бассейнов
- •12. Сопутствующие полезные ископаемые угленосных формаций
- •13. Буроугольные месторождения Беларуси
- •14. Сапропелиты.
- •15. Горючие сланцы
- •16. Основные геологические факторы образования морских эвапоритов.
- •17. Основные пространственно-временные закономерности распространения калийных и калийно-магниевых солей на Земле.
- •18. Каменная соль.
- •19. Генетически-формационная и геолого-промышленная классификация калийных солей.
- •20. Верхнекамское месторождение калийных солей
- •21. Месторождения калийных солей Северной Америки
- •23. Генетические типы и важнейшие месторождения фосфоритов и апатитов
- •24.Месторождения фосфоритов Беларуси
- •25.Сера: генетические типы промышленных месторождений и закономерности их размещения
- •26.Месторождения серы Ирака и зоны Мексиканского залива
- •27.Графит
- •29. Слюды.
- •30,31. Асбест.
- •32. Месторождения алмазов: общие сведения, генетические типы промышленных месторождений
- •33. Месторождения алмазов Республики Саха и Австралии
- •35. Месторождения гипса и ангидрита
- •36. Месторожденія карбонатных пород.
- •37. Месторождения карбонатных пород беларуси
- •38. Месторождения диатомитов, трепелов, опок
- •39. Глины, каолины, глинистые породы, фарфоровые камни.
- •40. Месторождения песчаного и песчано-гравийного материала Беларуси
30,31. Асбест.
Минералогия. Асбестами называются минералы, которые легко расщепляются на тончайшие прочные и гибкие волокна, выдерживающие высокие температуры. К ним относятся хризотил-асбест, крокидолит, амозит, антофиллит, иногда тремолит, актинолит, режикит и др. По своей атомной структуре хризотил-асбест принадлежит к минеральной группе серпентина, а все остальные – к группе амфиболов.
Хризотил-асбест («белый асбест») – волокнистая разновидность водного силиката магния – серпентина. Состав его отвечает формуле Mg6[Si2O5](OH)8 или 3MgO . 2SiO2 . 2H2O. Элементарные кристаллы-волокна обладают трубчатым строением и имеют форму полых цилиндров с внешним диаметром 260 А, внутренним – 130 А и толщиной стенок 65 А. Хризотит-асбест слагает жилки в темно-зеленых серпентинитах. Характеризуется высокой температурой плавления (1521 0С), при температуре 700 о С теряет конституционную воду и становится хрупким. Твердость его 3–3,5, средняя плотность – 2,5 г/см3. Хризотит-асбест щелочеустойчив, но мало устойчив к воздействию кислот, обладает высокими сорбционными, тепло-звуко- и электроизоляционными свойствами. Волокна его имеют длину от сотых долей миллиметра до 250–300 мм, обычно до 6–7 мм.
Крокидолит («голубой или синий асбест») – волокнистая разновидность рибекита. Кристаллизуется в моноклинальной сингонии. Химический состав крокидолита выражается формулой Na2Fe5[Si4O11]2(OH)2 или Na2O . 3FeO . Fe2O3 . 8SiO2 . H2O. Встречается в поперечно-волокнистых жилках. Температура плавления – 1193 о С. По механической прочности не уступает хризотил-асбесту, но теряет конституционную воду при температуре 200–500 о С. Обладает высокими тепло- и электроизоляционными свойствами. Обычная длина волокна 1,5–30 мм, максимальная – 75 мм.
Амозит («коричневый асбест») – это водный магнезиальный силикат сложного и непостоянного состава с большим содержанием глинозема. Его химический состав MgFe3[Si4O11]2(OH)2 или MgO . 6FeO . 8SiO2 .H2O. Цвет амозита пепельно-серый до коричневого, после извлечения из породы – белый. Температура плавления – 1100–1200 о С, устойчив к воздействию кислот и щелочей. Для него характерна большая длина волокна, в среднем 100–175 мм.
Применение в промышленности. Асбесты широко применяются во многих отраслях промышленности. Использование их основано на охарактеризованных выше свойствах асбестовых минералов, а также в зависимости от длины волокна. Существует два класса асбестов – текстильное волокно и группа строительных сортов.
Особенно широкое применение имеет хризотил-асбест. К текстильному асбесту относят сорта с длиной волокна более 8 мм. Асбестовое волокно используется в производстве пряжи и тканей, идущих для изготовления защитных огнестойких костюмов, брезентов, тормозных лент, дисков сцепления, электроизоляционных лент, прокладок, фильтров и других видов продукции.
В шиферно-картонно-бумажном производстве хризотил-асбест применяется для изготовления шифера, асбоцементных труб для канализации, водопровода, для получения асбестовой бумаги и картона, а также в производстве тепло- и электроизоляционных смесей и теплостойких пластмасс.
Амфибол-асбесты (крокидолит, амозит и др.) применяются в химической промышленности для производства различных кислото-щелочных изделий (фильтров, прокладок, пластмасс и др.), а их длинноволокнистые сорта являются текстильным сырьем.
Типы руд. В природе волокна асбеста встречаются в агрегатах трех типов. Наиболее часто наблюдаются поперечно- и косоволокнистые агрегаты, слагающие жилы, в которых волокна асбеста ориентированы строго параллельно друг другу, но располагаются или перпендикулярно к стенкам жилы (поперечно-волокнистые жилки), или под косым углом (косоволокнистые жилки). Они характерны в основном для хризотил-асбеста, крокидолита и амозита. Выделяются четыре типа жилкования: 1) простые отороченные жилы (нередко с просечками в центре их); 2) сложные отороченные жилы (серия взаимно параллельных жилок); 3) жилы типа крупной сетки, представленные разнообразно ориентированными поперечно-волокнистыми жилами, иногда пересекающимися между собой, но чаще плавно сопряженными друг с другом; 4) мелкопрожил – серия взаимно параллельных поперечно-волокистых жилок мощностью 2–3 мм, реже 5–6 мм.
Продольно-волокнистые агрегаты образуют жилки, в которых волокно располагается параллельно стенкам. Это обычно длинное волокно, но в основном низкого качества. Продольно-волокнистый асбест встречается в месторождениях хризотил-асбеста и антофиллита. Типичный представитель этой группы – Карачаевское месторождение асбеста на Северном Кавказе.
Спутанно-волокнистые агрегаты образованы разно ориентированными пучками, радиально-лучистыми гнездами или тончайшими жилками радиально расположенных иголок и волокон асбеста. Под микроскопом мельчайшие пучки, гнезда и тончайшие жилки волокон представляют так называемое волокно массы («mass fiber»). Агрегаты этого типа свойственны антофиллиту, родуситу и режикиту.
Общетехнические требования и способы добычи. Ценность асбеста помимо огнестойкости и устойчивости к воздействию кислот определяется также длиной его волокна и прочностью. По длине волокна выделяют восемь групп: от 0 (нулевой) до 7-й. Для нулевой группы длина волокна превышает 13 мм, а для седьмой составляет менее 1 мм.
По прочностным свойствам выделяют следующие разновидности асбеста: 1) высокой прочности (прочность на растяжение около 300 кг/мм2); 2) полуломкий, или пониженной прочности; 3) ломкий, или слабой прочности (прочность на растяжение 110–220 кг/мм2).
Асбестовые руды, как правило, разрабатываются с помощью открытых работ. Высокосортное волокно «крюд» нередко добывают вручную. При добыче хризотил-асбеста производят валовую выемку асбестоносных пород. Поскольку содержание волокна в них составляет лишь немногие проценты, приходится при этом перерабатывать огромные объемы горной породы. В настоящее время в мире (Канада, США и др.) наблюдается тенденция к переходу на подземные работы с применением системы отработки с магазинированием или более производительной системы с массовым поэтажным обрушением.
Ресурсы и запасы. Запасы (общие) асбестового волокна всех минеральных видов в мире (без России и Китая) составляют около 100 млн т , из них на хризотил-асбест приходится около 95 %. В странах СНГ общие запасы хризотил-асбеста превышают 180 млн т. Основные ресурсы и запасы этого минерального сырья сосредоточены в России и Канаде.
Крупными считаются месторождения хризотил-асбеста с запасами волокна (млн т) более 5, средними – 0,5–5, мелкими – менее 0,5. Для месторождений амфибол-асбеста принято следующее деление (тыс. т): крупные – более 50, средние – 5–50 и мелкие – менее 5.
Генетические типы промышленных месторождений. В настоящее время выделяются четыре главнейших геолого-промышленных типа месторождений асбеста.
Первый тип – линзо- и трубообразные залежи и жилы с хризотиловой минерализацией в серпентинизированных ультрабазитах. С этим типом связаны наиболее крупные месторождения хризотил-асбеста (Баженовская группа на Урале, Тетфордский пояс в провинции Квебек в Канаде и др.).
Второй тип – пластовые и жилообразные зоны серпентинизации с хризотиловой минерализацией в метаморфизованных магнезиальных карбонатных толщах. Втречаются значительно реже месторождений первого типа. Для них наиболее характерны единичные жилы (Аспогашское месторождение в России, месторождения в штате Аризона). Иногда наблюдаются сетчатые жилы, мелкопрожил, просечки (Вангырское месторождение на Полярном Урале, месторождения в Китае и др.). Все месторождения этого типа считаются контактово-метасоматическими. Они локализованы в магнезиальных карбонатных породах вблизи контакта с изверженными основными или кислыми породами. Серпентинизация и асбестообразование происходили в гидротермальную стадию контактового метасоматоза по доломитам в условиях привноса кремнекислоты:
3CaMg(CO3)2 + 2H2O + 2SiO2 = H4Mg3Si2O9 + 3CaCO3 + 3CO2.
доломит серпентин кальцит
Достоинством асбестового волокна месторождений этого типа является исключительно низкая железистость, что предопределяет использование его в электротехнической промышленности.
Третий тип – пластовые жилы с крокидолитом и амозитом в железо-кремнистых породах типа железистых кварцитов и яшм близ контактов с доломитами. Месторождения этого типа известны в ЮАР (Трансвааль и Капская провинция), в Западной Австралии.
Четвертый тип – гнездо-, линзо- и штокообразные тела с антофиллит-асбестовой минерализацией в метаморфизованных ультрабазитах амфиболито-гнейсовых комплексов. Характерна тесная связь месторождений этого типа с метаморфизованными ультраосновными породами в составе амфиболито-гнейсовых комплексов регионального метаморфизма. Типичные представители – Сысертское месторождение на Урале, Бугетысайское в Мугоджарах, месторождения Финляндии, США и других стран.
Геология месторождений асбеста. В СНГ крупнейшим по запасам и экономическому значению является Баженовский асбестоносный район, находящийся в Свердловской области. Здесь выявлен ряд месторождений, крупнейшим из которых является Баженовское (близ г. Асбест). Это месторождение приурочено к Баженовскому массиву гипербазитов, входящему в состав полосы габбро-перидотитов Среднего Урала, простирающейся в субмеридиональном направлении примерно на 180 км.
На месторождении выявлено 28 промышленных залежей хризотил-асбеста. Форма их эллипсоидальная, штоко- и линзообразная.
Месторождения Баженовского асбестоносного района являются крупнейшими в мире, эксплуатируются рядом крупных карьеров. Ежегодно добыча составляет 1,5–2 млн т минеральной массы.
Бугетысайское месторождение антофиллит-асбеста в Казахстане. Месторождение находится в бывшей Актюбинской области в 80 км к востоку от ж/д станции Эмба. Геологически оно приурочено к северо-восточному периклинальному погружению Бугетысайской антиклинали − локальной структуры в пределах Мугоджарского мегаантиклинория, сложенной рифейскими интенсивно метаморфизованными породами. На месторождении развиты многочисленные тела метаморфизованных ультрабазитов, пегматитовые, аплитовые и кварцевые жилы.
Измененные ультрабазитовые тела, содержащие антофиллит-асбестовую минерализацию, залегают согласно среди отложений борлинской свиты близ ее контакта с породами кандыкаринской свиты, образуя две вытянутых на северо-восток зоны: северную и центральную. В пределах центральной зоны расположены наиболее значительные тела (залежи). Промышленная асбестоносность связана с тальк-антофиллитовой и вермикулит-антофиллит-тальковой породами.
Асбест развивается преимущественно по антофиллиту, реже по тальку.
В настоящее время на месторождении выявлено и разведано несколько десятков тел измененных ультрабазитов с промышленной антофиллит-асбестовой минерализацией. Оно является резервной базой асбестовой промышленности Казахстана.
По представлениям А.Я. Хмары и Г.И. Бурда месторождение имеет метаморфогенную природу.
Месторождения амозита и крокидолита ЮАР. Основные месторождения амозита сосредоточены в провинции Трансвааль в пределах обширного рудного поля, представляющего дугообразную полосу длиной 100 км, окаймляющую северо-восточное окончание Бушвельдского интрузивного комплекса. В геологическом строении рудного поля принимают участие породы трансваальской супергруппы докембрия (кварциты, доломиты, железистые кварциты, яшмы, сланцы и др. Максимальная мощность этой толщи достигает 700 м.
В пределах каждого их слоев фиксируется до 5–6 параллельных прожилков со средней длиной волокна 10–12 см.
Месторождения крокидолита находятся в Капской провинции и сосредоточены в пределах полосы, вытянутой на 400 км и шириной до 45 км. Они связаны с образованиями той же трансваальской супергруппы докембрия. Крокидолитовая минерализация приурочена к группе гхаап, сложенной преимущественно доломитами с пачками полосчатых железистых кварцитов. Выделяется до восьми асбестоносных жил со средней длиной волокна 15–20 мм. Зона промышленной крокидолитовой минерализации имеет прерывистый характер. Разработка осуществляется посредством небольших открытых горных выработок.