Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
TMM_KR№1.docx
Скачиваний:
8
Добавлен:
20.09.2019
Размер:
57.44 Кб
Скачать

3.2 Определение скорости и ускорений методом планов

Для определения скорости и ускорения, на заданном плане положения механизма, покажем во всех точках направление действия векторов скоростей и ускорений (рисунок 3).

План скоростей механизма.

Определим скорость точки «А» по формуле:

VA = ω1lOA, (7)

где ω1 – угловая скорость кривошипа, ω1 = 6 с-1 ;

lOA – длина кривошипа, lOA = 0.10 м.

Подставив значения в формулу, получим: VA = 6 ∙ 0,10 = 0,6 м/с

Выберем масштаб плана скоростей:

µv = , (8)

где Pva – отрезок на плане скоростей (60…100), Pva = 100 мм.

Подставив значения, получим: µv = 0,6/100 = 0,006

(9)

где – относительная скорость точки «B» относительно точки «А», по направлению перпендикулярно «АВ».

- скорость проекции точки «В» на стойку, = 0.

- относительная скорость или скорость скольжения ползуна, направлена параллельно направляющей.

Решим эти уравнения графически, построив для заданного положения механизма план скоростей (рисунок 3).

Точку s2 на плане скоростей найдём, используя свойство подобия планов.

аs2 /аb = AS2 /AВ, откуда аs2 = аb · AS2 / AВ = · 50/100 = 43,64 мм,

где аs2 и аb – длины отрезков на плане ускорений механизма, мм (рисунок 3).

AS2 и AВ - длины отрезков на плане положения, мм.

Определим скорости точек механизма по величине:

VBA = = = 0,52 м/с

VBBо = Рνв ∙ µv = 60,91 ∙ 0,006 = 0,37 м/с

VS2 = Pνs2 ∙ µv = 70,36 ∙ 0,006 = 0,42 м/с

Определим угловую скорость шатуна:

ω2 = = = 1,3 c-1

Направление угловой скорости ω2 определяется вектором относительной скорости . Следовательно ,в исследуемом положении механизма шатун вращается по часовой стрелке.

Определим относительный процент расхождения результатов определения скорости точки «B».

VB = = ∙ 100% = 2,4 %

План ускорений механизма.

Определение ускорения точки «А» относительно точки «О».

, (10)

где = 0;

и - нормальное и касательное ускорения точки А при враще­нии кривошипа вокруг точки О. Вектор направлен от точки А к точке О, вектор направлен перпендикулярно ОА.

anAО = lOA = 62 ∙ 0,10 = 3,6 м/с2;

atAО = ɛ1lOA = 3 ∙ 0,10 = 0,3 м/с2

Выберем масштаб плана ускорений:

µa = , (11)

где – отрезок на плане ускорений (60…120), Paa = 90 мм.

Подставив значения, получим: µa = 3,6/90 = 0,04

Определим длину вектора :

= 0,3/0,04 = 7,5 .

(12)

где,

- ускорение точки А;

Определим длину вектора :

аnВА = lAB = 1,32 ∙ 0,4 = 0,676 м/с2

Решим эти уравнения графически, построив для заданного положения механизма план ускорений (рисунок 3).

Точку s2 на плане скоростей найдём, используя свойство подобия планов.

аs2 /аb = AS2 /AВ, откуда аs2 = аb · AS2 / AВ = 45,52 · 50/90 = 25,28 мм,

где аs2 и аb – длины отрезков на плане ускорений механизма, мм (рис. 3).

AS2 и AВ - длины отрезков на плане положения, мм.

Определим числовые значения линейных ускорений точек.

aB = Pab ∙ µa = 84,78 ∙ 0,04 = 3,3912 м/с2

= tBA ∙ µa = 49,74 ∙ 0,04 = 1,98972 м/с2

aBA= ba ∙ µa = 45,52 ∙ 0,04 = 1,82 м/с2

= PaS2µa = 84,41 ∙ 0,04 = 3,376 м/с2,

где Pab, tBA, ba, PaS2 – длины отрезков на плане ускорений механизма (рис. 3).

Определим числовое значение углового ускорения шатуна.

ɛ2 = = 1,98972/0,4 = 5 с-2

Направление угловой скорости шатуна определяется вектором касательной составляющей . В нашем случае угловое ускорение шатуна направлено против часовой стрелки.

Определим относительный процент расхождения результатов определения ускорения точки «B».

aB = = ∙ 100% = 0,7%

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]