Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
конспект лекций по коллоидной химии 2.doc
Скачиваний:
125
Добавлен:
20.09.2019
Размер:
10.04 Mб
Скачать

Диффузия

Диффузия – самопроизвольный процесс выравнивания концентрации частиц по всему объему раствора или газа под влиянием теплового (или броуновского) движения.

Эйнштейн, изучая броуновское движение, установил связь коэффициента диффузии – D со средним сдвигом:

Эйнштейн показал, что коэффициент диффузии D связан с размерами диффундирующих частиц уравнением:

где – радиус сферических частиц, размер которых много больше, чем размер молекул растворителя.

Уравнение Эйнштейна для коэффициента диффузии является одним из основных в коллоидной химии: с его помощью можно вычислить размер частиц золей и молекулярную массу полимера. Для этого надо лишь экспериментально определить коэффициент диффузии. При этом измеряют скорость изменения концентрации в слоях раствора (концентрацию определяют чаще всего оптическими методами – показатель преломления, оптическая плотность раствора и др.).

Размерность D – м2/с.

При 20 0С: для сахарозы D=4,610-10 м2/с, для коллоидных частиц D=510-13 м2/с.

Физический смысл коэффициента диффузии следующий – коэффициент равен массе вещества, продиффундировавшего в единицу времени через единицу площади при градиенте концентрации равном единице.

Осмотическое давление коллоидных растворов.

Осмотическое давление в коллоидных системах составляет очень малую величину, трудно воспроизводимую в опытах. Концентрации золей невелики и обычно составляют не более 1%. А так как коллоидные частицы значительно крупнее молекул, то число частиц – отдельных кинетических единиц – невелико и осмотическое давление также невелико.

Осмотическое давление в коллоидных системах убывает обратно пропорционально кубу радиуса частиц:

где – осмотическое давление в золях одного итого же вещества с различной дисперсностью частиц.

Малейшее нарушение агрегативной устойчивости коллоидной системы вызывает резкое снижение осмотического давления.

Седиментация в дисперсных системах.

Седиментацией (от лат. sedimentum – осадок) называют процесс оседания частиц дисперсной фазы в жидкой или газообразной среде под действием силы тяжести.

Всплывание частиц (например, капель в эмульсиях) носит название обратной седиментации.

Скорость оседания частиц подчиняется закону Стокса:

и - плотности частиц и среды;

- вязкость среды;

- радиус;

- ускорение силы тяжести.

Если разность имеет знак минус, частицы легче среды и всплывают.

Измерив скорость оседания можно вычислить радиус частиц (седиментационный анализ):

,

где

Способность к седиментации часто выражают через константу седиментации :

где – скорость оседания;

- ускорение свободного падения.

Единица измерения - сведберг (1Сб = 10-13с) или секунда.

Величина обратная константе седиментации является мерой кинетической устойчивости системы:

Оседают сначала более крупные частицы, затем – мельче, при этом частицы укладываются слоями.

Оседанию препятствует броуновское движение и диффузия.

Установившееся состояние называют седиментационно-диффузионным равновесием.

Для проведения седиментационного анализа кинетически устойчивых систем (золей, растворов ВМС) с целью определения размеров и массы их частиц недостаточно силы земного тяготения.

Русский ученый А.В. Думанский (1912) предложил подвергать коллоидные системы центрифугированию.

Сведберг (1923г.) разработал специальные центрифуги с огромным числом оборотов, названные ультрацентрифугами.

Современные ультрацентрифуги дают возможность получить центробежную силу, превышающую ускорение силы тяжести в 105 раз.

Современная ультрацентрифуга – сложный аппарат, центральная часть которого ротор (с частотой вращения 20-60000 об/мин и выше), с тончайшей регулировкой температуры и оптической системой контроля за процессом осаждения.

Скорость седиментации частиц в ультрацентрифуге рассчитывают по уравнению Стокса:

заменяя в нем на :

где – угловая скорость вращения ротора;

- расстояние от частицы до оси вращения.

Ультрацентрифуги используются для изучения коллоидных систем: определяют размеры, формы частиц, а также препаративного разделения и выделения фракций с различными свойствами (в том числе вирусов, белков, нуклеиновых кислот).