- •Конспект лекций по дисциплине «Коллоидная химия»
- •Оглавление
- •Предисловие
- •Лекция 1. Основные определения коллоидной химии и ее предмета. Основные признаки и классификация дисперсных систем.
- •Значение коллоидной химии
- •Основные признаки дисперсных систем
- •Изменение удельной поверхности при дроблении 1см3 вещества
- •Классификация дисперсных систем
- •Классификация дисперсных систем по агрегатному состоянию
- •Лекция 2. Получение коллоидных систем (кс) и их очистка.
- •Методы конденсации.
- •Методы диспергирования.
- •Метод пептизации.
- •Очистка коллоидных растворов.
- •Очищаемый раствор, 2 – растворитель (вода),
- •Лекция 3. Молекулярно-кинетические и оптические свойства коллоидных систем.
- •Броуновское движение.
- •Диффузия
- •Осмотическое давление коллоидных растворов.
- •Седиментация в дисперсных системах.
- •Оптические свойства дисперсных систем
- •Явление рассеяния света.
- •Поглощение (адсорбция) света.
- •Лекция 4. Электрокинетические свойства дисперсных систем.
- •Теории образования и строения дэс.
- •Электрокинетический потенциал.
- •Влияние электролитов на электрокинетический потенциал
- •Строение мицеллы.
- •Электрокинетические явления.
- •Коагуляция
- •Действие электролитов на коагуляцию
- •Совместное действие электролитов при коагуляции
- •Теория устойчивости гидрофобных дисперсных систем длфо
- •Старение золей
- •Защитное действие молекулярных адсорбирующих слоев
- •Лекция 6. Поверхностная энергия и поверхностное натяжение.
- •Оценка пн жидкостей из родственных характеристик
- •Межфазное натяжение на поверхности раздела твердое тело-жидкость. Смачивание.
- •Адсорбция. Изотерма адсорбции. Уравнение Гиббса.
- •Построение изотермы адсорбции и нахождение величин .
- •Лекция 7. Поверхностные явления. Адсорбция
- •Теории адсорбции.
- •Комплекс
- •Полимолекулярная сорбция
- •Частные случаи адсорбции. Адсорбция на границе жидкость-газ.
- •Адсорбция на границе раствор-газ
- •Применение пав
- •Адсорбция на границе твердое тело-раствор
- •Молекулярная адсорбция из растворов
- •Влияние природы среды
- •Ионная адсорбция
- •Обменная адсорбция
- •Адсорбция на границе твердое тело-газ
- •Лекция 8. Растворы полимеров как коллоидные системы (молекулярные коллоиды)
- •Общая характеристика растворов полимеров
- •Набухание полимеров
- •Осмотическое давление и вязкость растворов полимеров
- •- Для раствора низкомолекулярного вещества;
- •Лекция 9. Застудневание растворов и студни полимеров
- •Классификация студней
- •Условия образования студней
- •Механизм процессов гелеобразованияи структура полимерных гелей
- •Реология гелей
- •Реологические теории.
- •Теория Эйринга
- •Структурные теории.
- •Гидродинамические теории
- •Теория Грессли
Реологические теории.
Существует достаточно большое количество различных реологических теорий.
Все теории можно условно разбить на 4 группы:
- теории Эйринга и его последователей;
- структурные теории;
- гидродинамические теории;
- другие (например те, которые частично относятся к каждой из перечисленных).
Теория Эйринга
Теория Г. Эйринга связывает явление
аномальной вязкости с влиянием
и
на высоту потенциального барьера,
препятствующего переходу
молекулярно-кинетических единиц из
одного равновесного положения в другое.
Эйринг представлял вязкую среду как совокупность молекулярно-кинетических единиц (МКЕ). МКЕ не имеют определенной формы и способны перемещаться в пространстве: перескакивать с места на место с определенной частотой. При этом МКЕ преодолевают потенциальный барьер.
По теории абсолютных скоростей, частота перескока пропорциональна экспоненте высоты потенциального барьера:
где
- частота перескоков в свободном
состоянии;
- высота потенциального барьера;
- абсолютная температура;
- константа Больцмана.
Если вероятность перехода МКЕ через энергетический барьер во всех направлениях одинакова, направление течения отсутствует.
Воздействие на систему внешней силы эквивалентно снижению склонов потенциального барьера в направлении его и увеличению в направлении от него (кривая пунктиром на рис. 9.4).
Рис. 9.4. Снижение потенциального барьера при воздействии на систему внешней силы.
На основе своих предположений Эйринг предложил следующую зависимость:
где – постоянная, обратно пропорциональная абсолютной температуре;
- знак гиперболического синуса.
Уравнением Эйринга, однако, нельзя описать реальные реологические кривые.
Недостатком этого уравнения является
отсутствие наименьшего значения вязкости
,
которое соответствует предельному
разрушению структуры.
Структурные теории.
Структурные теории вязкости рассматривают зависимость вязкости от режимов течения как процесс обратимого разрушения – восстановления надмолекулярной структуры полимера.
Разрушение и восстановление связывают с множеством различных процессов, происходящих при течении: перемещением слоев потока, вращением клубков макромолекул, разрушением и образованием новых межмолекулярных связей.
Структурные теории не имеют своих реологических уравнений. В них используются математические модели, основанные на теории Эйринга.
В структурных теориях определяют степень
разрушения структуры
,
или восстановления
:
,
,
где
– наибольшая ньютоновская вязкость;
- наименьшая ньютоновская вязкость.
Структурные теории позволяют объяснить ряд явлений, которые пока нельзя описать на основе других теорий, например, явление сдвигового повышения вязкости под влиянием напряжения сдвига (образование дополнительных связей под влиянием напряжения сдвига, ориентация движения макромолекул вдоль потока, благоприятное пространственное расположение макромолекул для формирования дополнительных связей).
Гидродинамические теории
Гидродинамические теории объясняют снижение вязкости изменением формы и соответственно сопротивления перемещению молекул в среде.
Гидродинамические теории рассматривают поведение каждой молекулы как независящее от остальных.
Основной гидродинамический эффект обусловлен трением между частицей и средой (растворителем). Интенсивность этого трения является пропорциональной скорости перемещения суспендированной частицы в жидкости. При деформации суспензий происходит ориентация частиц в потоке. Это изменяет условие обтекания частиц средой и вязкость системы.
