Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экзамен ксе2.docx
Скачиваний:
9
Добавлен:
20.09.2019
Размер:
317.35 Кб
Скачать

9) Анализ и синтез

Анализ и синтез (греч. разложение и соединение) - в самом общем значении процессы мысленного или фактического разложения целого на составные части и воссоединения целого из частей. А. и с. играют важную роль в познавательном процессе и осуществляются на всех его ступенях. В мыслительных операциях А. и с. выступают как логические приемы мышления, совершающиеся при помощи абстрактных понятий и тесно связанные с рядом мыслительных операций: абстракцией, обобщением и т. д. Логический А. заключается в мысленном расчленении исследуемого объекта на составные части и является методом получения новых знаний. В зависимости от характера исследуемого объекта А. выступает в различных формах. Условием всестороннего познания исследуемого объекта является многогранность его А. Расчленение целого на составные части позволяет выявить стооение исследуемого объекта, его структуру; расчленение сложного явления на более простые элементы позволяет отделить существенное от несущественного, сложное свести к простому; одной из форм А. служит классификация предметов и явлений. А. развивающегося процесса позволяет выделить в нем различные этапы и противоречивые тенденции и т. д. В процессе аналитической деятельности мысль движется от сложного к простому, от случайного к необходимому, от многообразия к тождеству и единству. Цель А. - познание частей как элементов сложного целого. Однако А. приводит К выделению сущности, к-рая еще не связана с конкретными формами ее проявления: единство, продолжающее оставаться абстрактным, еще не раскрыто как единство в многообразии. С., напротив, есть процесс объединения в единое целое частей, свойств, отношений, выделенных посредством А. Идя от тождественного, существенного к различию и многообразию, он соединяет общее и единичное, единство и многообразие в живое конкретное целое. С. дополняет А. и находится о ним в неразрывном единстве. Диалектико-материалистическому пониманию А. и с. противостоит их идеалистическая трактовка как только мыслительных приёмов, не связанных с объективным миром и практикой человека, а также метафизическое обособление А. и с., их противопоставление и абсолютизация одного из этих двух процессов. В истории философии противопоставление А. и с. связано с возникновением в естествознании и классик ческой буржуазной политической экономии в 17-18 вв. аналитического метода. Заменив умозрительные конструкции опытным изучением эмпирической действительности, этот метод сыграл в то время прогрессивную роль. Последующее развитие науки показало, что аналитический метод выступает как историческая предпосылка тесно с ним связанного синтетического метода. С т. зр. теоретико-познавательной значимости и тот и др. метод, лишённые односторонности, выступают как взаимообусловленные логические процессы, подчиненные общим требованиям диалектического метода.

Аналогия и моделирование

Под аналогией понимается подобие, сходство каких-то свойств, признаков или отношений у различных в целом объектов. Установление сходства (или различия) между объектами осуществляется в результате их сравнения. Таким образом, сравнение лежит в основе метода аналогии.

Если делается логический вывод о наличии какого-либо свойства, признака, отношения у изучаемого объекта на основании установления его сходства с другими объектами, то этот вывод называют умозаключением по аналогии. Ход такого умозаключения можно представить следующим образом. Пусть имеется, например, два объекта А и В. Известно, что объекту А присущи свойства P1 Р2,..., Рn, Рn+1. Изучение объекта В показало, что ему присущи свойства Р1 Р2,..., Рn, совпадающие соответственно со свойствами объекта А. На основании сходства ряда свойств (Р1 Р2,..., Рn) у обоих объектов может быть сделано предположение о наличии свойства Рn+1 у объекта В.

Степень вероятности получения правильного умозаключения по аналогии будет тем выше: 1) чем больше известно общих свойств у сравниваемых объектов; 2) чем существеннее обнаруженные у них общие свойства и 3) чем глубже познана взаимная закономерная связь этих сходных свойств. При этом нужно иметь в виду, что если объект, в отношении которого делается умозаключение по аналогии с другим объектом, обладает каким-нибудь свойством, не совместимым с тем свойством, о существовании которого должен быть сделан вывод, то общее сходство этих объектов утрачивает всякое значение.

Указанные соображения об умозаключении по аналогии можно дополнить также и следующими правилами:

1) общие свойства должны быть любыми свойствами сравниваемых объектов, т. е. подбираться «без предубеждения» против свойств какого-либо типа; 2) свойство Рn+1 должно быть того же типа, что и общие свойства Р1 Р2,..., Рn; 3) общие свойства Р1 Р2, ..., Рn должны быть возможно более специфичными для сравниваемых объектов, т. е. принадлежать возможно меньшему кругу объектов; 4) свойство Рn+1, наоборот, должно быть наименее специфичным, т. е. принадлежать возможно большему кругу объектов.

Существуют различные типы выводов по аналогии. Но общим для них является то, что во всех случаях непосредственному исследованию подвергается один объект, а вывод делается о другом объекте. Поэтому вывод по аналогии в самом общем смысле можно определить как перенос информации с одного объекта на другой. При этом первый объект, который собственно и подвергается исследованию, именуется моделью, а другой объект, на который переносится информация, полученная в результате исследования первого объекта (модели), называется оригиналом (иногда — прототипом, образцом и т. д.). Таким образом, модель всегда выступает как аналогия, т. е. модель и отображаемый с ее помощью объект (оригинал) находятся в определенном сходстве (подобии).

«Под моделированием понимается изучение моделируемого объекта (оригинала), базирующееся на взаимооднозначном соответствии определенной части свойств оригинала и замещающего его при исследовании объекта (модели) и включающее в себя построение модели, изучение ее и перенос полученных сведений на моделируемый объект — оригинал»8.

В зависимости от характера используемых в научном исследовании моделей различают несколько видов моделирования.

1. Мысленное (идеальное) моделирование. К этому виду моделирования относятся самые различные мысленные представления в форме тех или иных воображаемых моделей. Например, в идеальной модели электромагнитного поля, созданной Дж. Максвеллом, силовые линии представлялись в виде трубок различного сечения, по которым течет воображаемая жидкость, не обладающая инерцией и сжимаемостью. Модель атома, предложенная Э. Резерфордом, напоминала Солнечную систему: вокруг ядра («Солнца») обращались электроны («планеты»). Следует заметить, что мысленные (идеальные) модели нередко могут быть реализованы материально в виде чувственно воспринимаемых физических моделей.

2. Физическое моделирование. Оно характеризуется физическим подобием между моделью и оригиналом и имеет целью воспроизведение в модели процессов, свойственных оригиналу. По результатам исследования тех или иных физических свойств модели судят о явлениях, происходящих (или могущих произойти) в так называемых «натуральных условиях». Пренебрежение результатами таких модельных исследований может иметь тяжелые последствия. Поучительным примером этого является вошедшая в историю гибель английского корабля-броненосца «Кэптэн», построенного в 1870 году. Исследования известного ученого-кораблестроителя В. Рида, проведенные на модели корабля, выявили серьезные дефекты в его конструкции. Но заявление ученого, обоснованное опытом с «игрушечной моделью», не было принято во внимание английским Адмиралтейством. В результате при выходе в море «Кэптэн» перевернулся, что повлекло за собой гибель более 500 моряков.

В настоящее время физическое моделирование широко используется для разработки и экспериментального изучения различных сооружений (плотин электростанций, оросительных систем и т. п.), машин (аэродинамические качества самолетов, например, исследуются на их моделях, обдуваемых воздушным потоком в аэродинамической трубе), для лучшего понимания каких-то природных явлений, для изучения эффективных и безопасных способов ведения горных работ и т. д.

3. Символическое (знаковое) моделирование. Оно связано с условно-знаковым представлением каких-то свойств, отношений объекта-оригинала. К символическим (знаковым) моделям относятся разнообразные топологические и графовые представления (в виде графиков, номограмм, схем и т. п.) исследуемых объектов или, например, модели, представленные в виде химической символики и отражающие состояние или соотношение элементов во время химических реакций.

Особой и очень важной разновидностью символического (знакового) моделирования является математическое моделирование. Символический язык математики позволяет выражать свойства, стороны, отношения объектов и явлений самой различной природы. Взаимосвязи между различными величинами, описывающими функционирование такого объекта или явления, могут быть представлены соответствующими уравнениями (дифференциальными, интегральными, интегро-дифференциальными, алгебраическими) и их системами. Получившаяся система уравнений вместе с известными данными, необходимыми для ее решения (начальные условия, граничные условия, значения коэффициентов уравнений и т. п.). называется математической моделью явления.

Математическое моделирование может применяться в особом сочетании с физическим моделированием. Такое сочетание, именуемое вещественно-математическим (или предметно-математическим) моделированием, позволяет исследовать какие-то процессы в объекте-оригинале, заменяя их изучением процессов совсем иной природы (протекающих в модели; которые, однако, описываются теми же математическими соотношениями, что и исходные процессы. Так, механические колебания могут моделироваться электрическими колебаниями на основе полной идентичности описывающих их дифференциальных уравнений.

В настоящее время вещественно-математическое моделирование нередко реализуется с помощью электронных аналоговых устройств, которые позволяют создавать математическую аналогию между процессами, протекающими в объекте-оригинале и в специально организованной электронной схеме. Последняя и обеспечивает получение новой информации о процессах в исследуемом объекте.

4. Численное моделирование на компьютере. Эта разновидность моделирования основывается на ранее созданной математической модели изучаемого объекта или явления и применяется в случаях больших объемов вычислений, необходимых для исследования данной модели. При этом для решения содержащихся в ней систем уравнений с помощью компьютера необходимо предварительное составление программы, которая выполняется затем электронной вычислительной машиной в виде последовательности элементарных математических и логических операций. В данном случае компьютер вместе с введенной в нее программой представляет собой материальную систему, реализующую численное моделирование исследуемого объекта или явления.

Численное моделирование особенно важно там, где не совсем ясна физическая картина изучаемого явления, не познан внутренний механизм взаимодействия. Путем расчетов на компьютере различных вариантов ведется накопление фактов, что дает возможность в конечном счете произвести отбор наиболее реальных и вероятных ситуаций. Активное использование методов численного моделирования позволяет резко сократить сроки научных и конструкторских разработок.

СИСТЕМНЫЙ ПОДХОД: СОДЕРЖАНИЕ ПОНЯТИЯ, ОСНОВНЫЕ АСПЕКТЫ, УРОВНИ И ПРИНЦИПЫ

Существенное место в современной науке занимает системный метод исследования или (как часто говорят) системный подход.

Этот метод и стар и нов. Он достаточно стар, поскольку такие его формы и составляющие, как подход к объектам под углом зрения взаимодействия части и целого, становления единства и целостности, рассмотрения системы как закона структуры данной совокупности компонентов существовали, что называется от века, но они были разрозненны. Специальная разработка системного подхода началась с середины ХХ века с переходом к изучению и использованию на практике сложных многокомпонентных систем.

Прежде чем приступить к обсуждению эволюции системного подхода во времени, постараемся дать определение самого понятия "системный подход".

Системный подход -- направление методологии исследования, в основе которого лежит рассмотрение объекта как целостного множества элементов в совокупности отношений и связей между ними, то есть рассмотрение объекта как системы.

Говоря о системном подходе, можно говорить о некотором способе организации наших действий, таком, который охватывает любой род деятельности, выявляя закономерности и взаимосвязи с целью их более эффективного использования. При этом системный подход является не столько методом решения задач, сколько методом постановки задач. Как говорится, "Правильно заданный вопрос - половина ответа". Это качественно более высокий, нежели просто предметный, способ познания.

Основные понятия системного подхода: "система", "элемент", "состав", "структура", "функции", "функционирование" и "цель". Раскроем их для полного понимания системного подхода.

Система - объект, функционирование которого, необходимое и достаточное для достижения стоящей перед ним цели, обеспечивается (в определенных условиях среды) совокупностью составляющих его элементов, находящихся в целесообразных отношениях друг с другом.

Элемент - внутренняя исходная единица, функциональная часть системы, собственное строение которой не рассматривается, а учитываются лишь ее свойства, необходимые для построения и функционирования системы. "Элементарность" элемента состоит в том, что он есть предел членения данной системы, поскольку его внутреннее строение в данной системе игнорируется, и он выступает в ней в качестве такого явления, которое в философии характеризуют как простое. Хотя в иерархических системах элемент тоже может быть рассмотрен как система. А от части элемент отличает то, что слово "часть" указывает лишь на внутреннюю принадлежность чего-либо объекту, а "элемент" всегда обозначает функциональную единицу. Всякий элемент - часть, но не всякая часть - элемент.

Состав - полная (необходимая и достаточная) совокупность элементов системы, взятая вне ее структуры, то есть набор элементов.

Структура - отношения между элементами в системе, необходимые и до-статочные для того, чтобы система достигла цели.

Функции - способы достижения цели, основанные на целесообразных свойствах системы.

Функционирование - процесс реализации целесообразных свойств системы, обеспечивающий ей достижение цели.

Цель - это то, чего система должна достигнуть на основе своего функционирования. Целью может быть определенное состояние системы или иной продукт ее функционирования. Значение цели как системообразующего фактора уже отмечалось. Подчеркнем его еще раз: объект выступает как система лишь относительно своей цели. Цель, требуя для своего достижения определенных функций, обусловливает через них состав и структуру системы. К примеру, является ли системой груда строительных материалов? Всякий абсолютный ответ был бы неверным. В отношении цели жилья - нет. А вот как баррикада, укрытие, вероятно, да. Грудой строительных материалов нельзя пользоваться как домом, даже при наличии всех необходимых элементов, по той причине, что между элементами нет нужных пространственных отношений, то есть структуры. А без структуры они представляют собой только состав - совокупность необходимых элементов.