Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
8 вопрос-мини.doc
Скачиваний:
0
Добавлен:
20.09.2019
Размер:
65.54 Кб
Скачать

Безопасность алгоритмов

Различные алгоритмы предоставляют различные степени безопасности в зависимости от того, насколько трудно взломать алгоритм. Если стоимость взлома алгоритма выше, чем стоимость зашифрованных данных, вы, скорее всего, в безопасности. Если время взлома алгоритма больше, чем время, в течение которого зашифрованные данные должны сохраняться в секрете, то вы также, скорее всего, в безопасности. Если объем данных, зашифрованных одним ключом, меньше, чем объем данных, необходимый для взлома алгоритма, и тогда вы, скорее всего, в безопасности. Ларе Кнудсен (Lars Knudsen) разбил вскрытия алгоритмов по следующим категориям, приведенным в порядке убывания значимости:

  • Полное вскрытие. Криптоаналитик получил ключ.

  • Глобальная дедукция. Криптоаналитик получил альтернативный алгоритм, А, эквивалентный вашему без знания ключа.

  • Местная (или локальная) дедукция. Криптоаналитик получил открытый текст для перехваченного шифротекста.

  • Информационная дедукция. Криптоаналитик получил некоторую информацию о ключе или открытом тексте. Такой информацией могут быть несколько бит ключа, сведения о форме открытого текста и так далее.

Алгоритм является безусловно безопасным, если, независимо от объема шифротекстов у криптоаналитика, информации для получения открытого текста недостаточно. По сути, только шифрование одноразовыми блокнотами невозможно вскрыть при бесконечных ресурсах. Все остальные криптосистемы подвержены вскрытию с использованием только шифротекста простым перебором возможных ключей и проверкой осмысленности полученного открытого текста. Это называется вскрытием грубой силой. Криптография больше интересуется криптосистемами, которые тяжело взломать вычислительным способом. Алгоритм считается вычислительно безопасным (или, как иногда называют, сильным), если он не может быть взломан с использованием доступных ресурсов сейчас или в будущем. Термин "доступные ресурсы" является достаточно расплывчатым. Сложность вскрытия можно измерить различными способами:

  • Сложность данных Объем данных, используемых на входе операции вскрытия.

  • Сложность обработки. Время, нужное для проведения вскрытия. Часто называется коэффициентом работы.

  • Требования к памяти. Объем памяти, необходимый для вскрытия.

В качестве эмпирического метода сложность вскрытия определяется по максимальному из этих трех коэффициентов. Ряд операций вскрытия предполагают взаимосвязь коэффициентов: более быстрое вскрытие возможно за счет увеличения требований к памяти. Сложность выражается порядком величины. Если сложность обработки для данного алгоритма составляет 2128, то 2128 операций требуется для вскрытия алгоритма. (Эти операции могут быть сложными и длительными.) Так, если предполагается, что ваши вычислительные мощности способны выполнять миллион операций в секунду, и вы используете для решения задачи миллион параллельных процессоров, получение ключа займет у вас свыше 1019 лет, что в миллиард раз превышает время существования вселенной. В то время как сложность вскрытия остается постоянной (пока какой-нибудь Криптоаналитик не придумает лучшего способа вскрытия), мощь компьютеров растет. За последние полвека вычислительные мощности феноменально выросли, и нет никаких причин подозревать, что эта тенденция не будет продолжена. Многие криптографические взломы пригодны для параллельных компьютеров: задача разбивается на миллиарды маленьких кусочков, решение которых не требует межпроцессорного взаимодействия. Объявление алгоритма безопасным просто потому, что его нелегко взломать, используя современную технику, в лучшем случае ненадежно. Хорошие криптосистемы проектируются устойчивыми к взлому с учетом развития вычислительных средств на много лет вперед.

Принциип Керкгоффса — правило разработки криптографических систем, согласно которому в засекреченном виде держится только определённый набор параметров алгоритма, называемый ключом, а остальные детали могут быть открыты без снижения стойкости алгоритма ниже допустимых значений. Другими словами, при оценке надёжности шифрования необходимо предполагать, что противник знает об используемой системе шифрования всё, кроме применяемых ключей.

Сущность принципа заключается в том, что чем меньше секретов содержит система, тем выше её безопасность. Так, если утрата любого из секретов приводит к разрушению системы, то система с меньшим числом секретов будет надёжней. Чем больше секретов содержит система, тем более она ненадёжна и потенциально уязвима. Чем меньше секретов в системе — тем выше её прочность.

Принцип Керкгоффса направлен на то, чтобы сделать безопасность алгоритмов и протоколов независимой от их секретности; открытость не должна влиять на безопасность.

Большинство широко используемых систем шифрования, в соответствии с принципом Керкгоффса, используют известные, не составляющие секрета криптографические алгоритмы. С другой стороны, шифры, используемые в правительственной и военной связи, как правило, засекречены; таким образом создаётся «дополнительный рубеж обороны».

Полный перебор (или метод 'грубой силы' от англ. brute-force) - метод решения задачи путем перебора всех возможных вариантов. Сложность полного перебора зависит от размерности пространства всех возможных решений задачи. В криптографии на сложности полного перебора основывается оценка криптостойкости шифров. В частности, шифр считается криптостойким, если не существует метода взлома, существенно более быстрого, чем полный перебор всех ключей.

Настройки атаки перебором состоят из двух частей. Первая вкладка предназначена для задания диапазона перебираемых символов. Можно выбрать уже готовые заготовки или задать свои собственные. Чтобы задать свой диапазон символов, следует выставить опцию 'Пользовательский набор'. После этого, для формирования своего набора, станут доступны два поля ввода: первое - для ввода ASCII, второе - для ввода непечатных символов. Свой набор можно сохранить на диске. Во второй вкладке необходимо задать минимальную и максимальную длину перебираемых паролей. Важно помнить, что для атаки на LM хэши, максимальная длина не должна превышать 7 символов. Можно также задать и стартовый пароль, с которого начнется перебор. Таблица ниже дает наглядное представление о сложности пароля и зависимости его от длины и набора символов. Подразумевается, что скорость перебора составляет 100 млн. паролей в секунду.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]