Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
билеты матан.docx
Скачиваний:
17
Добавлен:
20.09.2019
Размер:
434.09 Кб
Скачать

39. Непрерывные случайные величины. Функция распределения. Плотность вероятности.

Функция распределения случайной величины. Её свойства

Каждая случайная величина полностью определяется своей функцией распределения.

Если  .- случайная величина, то функция F(x) = F (x) = P( < x) называется функцией распределения случайной величины  . Здесь P( < x) - вероятность того, что случайная величина  принимает значение, меньшее x.

Важно понимать, что функция распределения является “паспортом” случайной величины: она содержит всю информация о случайной величине и поэтому изучение случайной величины заключается в исследовании ее функции распределения, которую часто называют просто распределением.

Функция распределения любой случайной величины обладает следующими свойствами:

  • F(x) определена на всей числовой прямой R;

  • F(x) не убывает, т.е. если x1 x2, то F(x1) F(x2);

  • F(- )=0, F(+ )=1, т.е. и ;

  • F(x) непрерывна справа, т.е.

Функцией распределения называют функцию F(x), определяющую вероятность того, что случайная величина X  в результате испытания примет значение, меньшее x, т.е. F(x)=PX<x.

Выше непрерывная случайная величина задавалась с помощью функции распределения. Этот способ задания не является единственным. Непрерывную случайную величину можно также задать, используя другую функцию, которую называют плотностью распределения или плотностью вероятности (иногда ее называют дифференциальной функцией).

Плотностью распределения вероятностей непрерывной случайной величины X называют функцию f(x) — первую производную от функции распределения F(x):

F(x) =F'(x).

Из этого определения следует, что функция распределения является первообразной для плотности распределения.

Случайная величина Х называется непрерывной, если ее функция распределения F(x) есть непрерывная, кусочно-дифференцируемая функция с непрерывной производной.

Так как для таких случайных величин функция F(x) нигде не имеет скачков, то вероятность любого отдельного значения непрерывной случайной величины равна нулю

P{X=α}=0 для любого α.

В качестве закона распределения, имеющего смысл только для непрерывных случайных величин существует понятие плотности распределения или плотности вероятности.

Плотностью распределения (или плотностью вероятности) непрерывной случайной величины X в точке x называется производная ее функции распределения в этой точке и обозначается f(x). График плотности распределения называется кривой распределения.

40. Равномерное распределение

            Определение. Непрерывная случайная величина имеет равномерное распределение на отрезке [a, b], если на этом отрезке плотность распределения случайной величины постоянна, а вне его равна нулю.

Равномерное распределение, прямоугольное распределение, специальный вид распределения вероятностей случайной величины Х, принимающей значения из интервала (а — h, a + h); характеризуется плотностью вероятности:

 .

Математическое ожидание:

Ех = a, дисперсия Dx = h2/3, характеристическая функция:   .

С помощью линейного преобразования интервал (а — h, a + h) может быть переведён в любой заданный интервал. Так, величина Y = (X — a + h)/2h равномерно распределена на интервале (0, 1). Если Y1Y2,..., Yn равномерно распределены на интервале (0, 1), то закон распределения их суммы, нормированной математическим ожиданием n/2 и дисперсией n/12, при

возрастании n быстро приближается к нормальному распределению (даже при n = 3 приближение часто бывает достаточным для практики).