Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
!!!ФИЗИКА шпоры!!!.doc
Скачиваний:
21
Добавлен:
20.09.2019
Размер:
198.14 Кб
Скачать

1) Физика – это наука о природе, св-вах и строении материи, о законах ее движения.

Основным методом исследования явл. опыт. Опыт – наблюдение исследуемых явлений в точно контролируемых условиях позволяющих следить за ходом явления и многократно воспроизводить их.

Гипотеза – научное предположение выдвигаемое для объяснения какого-либо явления и требующее проверки на опыте.

Теория – это успешно прошедшая проверку и доказанная гипотеза.

Величина Обозн.вел. Ед. изм. Обозн. ед.

длина L метр м

масса M килогр. кг

время T сек с

сила тока I ампер А

термод. темп. θ кельвин К

кол-во в-ва ν моль моль

сила света J кандела кд

2) Механическим движением называют измене­ние положения тела (или его частей) относительно других тел. Например, человек, едущий на эскалато­ре в метро. Тело, относительно которого рассматривается движение, его называют телом отсчета. Система ко­ординат, тело отсчета, с которым она связана, и вы­бранный способ измерения времени образуют си­стему отсчета. Направленный отрезок прямой, проведенный из начального положения движущейся точки в ее конечное положение, называется перемещением (s) Скорость — векторная физическая величина, характеризующая быстроту перемещения тела, чис­ленно равная отношению перемещения за малый промежуток времени к величине этого промежутка. Ускорение — векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это измене­ние произошло. Характеристики механического движения свя­заны между собой основными кинематическими уравнениями.

s = v0t + at2/ 2;

v = v0 + at.

3) Предположим, что тело движется без уско­рения (самолет на маршруте), его скорость в течение продолжительного времени не меняется, а = 0, тогда кинематические уравнения будут иметь вид: v = const, s = vt.

Движение, при котором скорость тела не ме­няется, т. е. тело за любые равные промежутки вре­мени перемещается на одну и ту же величину, назы­вают равномерным прямолинейным движением.

Во время старта скорость ракеты быстро воз­растает, т. е. ускорение а > О, а == const.

В этом случае кинематические уравнения вы­глядят так: v = v0 + at, s = V0t + at2/ 2.

При таком движении скорость и ускорение имеют одинаковые направления, причем скорость изменяется одинаково за любые равные промежутки времени. Этот вид движения называют равноуско­ренным.

При торможении автомобиля скорость умень­шается одинаково за любые равные промежутки вре­мени, ускорение меньше нуля; так как скорость уменьшается, то уравнения принимают вид:v = v0 + at, s = v0t - at2/ 2.Такое движение называют равнозамедленным.

4) Криволинейные движения – движения, траектории которых представляют собой не прямые, а кривые линии.

Криволинейное движение – это всегда движение с ускорением, даже если по модулю скорость постоянна. Криволинейное движение с постоянным ускорением всегда происходит в той плоскости, в которой находятся векторы ускорения и начальные скорости точки. В случае криволинейного движения с постоянным ускорением в плоскости xOy проекции vxи vy ее скорости на оси Ox и Oy и координаты x и y точки в любой момент времени t определяется по формулам

Частным случаем криволинейного движения – является движение по окружности. Движение по окружности, даже равномерное, всегда есть движение ускоренное: модуль скорости все время направлен по касательной к траектории, постоянно меняет направление, поэтому движение по окружности всегда происходит с центростремительным ускорением где r – радиус окружности.

Вектор ускорения при движении по окружности направлен к центру окружности и перпендикулярно вектору скорости.

При криволинейном движении ускорение можно представить как сумму нормальной и тангенциальной составляющих 5)

5) Ускорение – характеризует быстроту изменения скорости.

Полное ускорение разделяют на 2 составляющих:

1) Тангенциальное ускорение (касательное) – характеризует изменение скорости по величине.

2)Нормальное – характеризует изменение скорости по направлению

6) Первый закон Ньютона: всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит ее изменить это состояние,он выполняется только в инерциальных системах отсчета.

ИНЕРЦИАЛЬНАЯ система отсчета-в которой справедлив закон инерции: материальная точка, на которую не действуют никакие силы, находится в состоянии покоя или равномерного прямолинейного движения.Любая система отсчета, движущаяся относительно инерциальной системы отсчета поступательно, равномерно и прямолинейно, также является инерциальной системой отсчета

7) Масса – это количественная мера инертности. Свойство тела оказывать сопротивление при попытках изменить модуль или направление его скорости называется инертностью. [m]=1кг mc= ∑mi

Импульсом тела называют векторную физи­ческую величину, являющуюся количественной ха­рактеристикой поступательного движения тел. Им­пульс обозначается р. Единица измерения импульса Р — кг • м/с. Импульс тела равен произведению мас­сы тела на его скорость: р = mv. Направление векто­ра импульса р совпадает с направлением вектора скорости тела v

8) 2-й закон Ньютона: Ускорение, которое приобретает тело прямо пропорционально результирующей всех сил, действующих на тело и обратно пропорционально массе.

,

Сила - количественная хар-ка интенсивности механического взаимодействия.

Сила – это векторная величина являющаяся мерой механического воздействия на тело со стороны других тел или полей в результате которого изменяется скорость тела или тело изменяет форму и размер.

Виды сил: 1) контактные, возникают при соприкосновении тел (сила трения, упругости); 2) дальнодействующие (полевые), возникают между телом и силовым полем.

9) Третий закон Ньютона:всякое действие материальных точек (тел) друг на друга носит характер взаимодействия; силы, с которыми действуют друг на друга материальные точки, всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки:F12=-F2I,где F12-сила, действующая на первую материальную точку со стороны второй; F21-сила, действующая на вторую материальную точку со стороны первой. Эти силы приложены к разным материальным точкам (телам), всегда действуют парами и являются силами одной природы.

12) Закон сохранения импульса: Если равнодействующая всех сил, приложенных к замкнутой системе материальных точек равна нулю, то суммарный импульс в замкнутой системе остается постоянным.

Условие применимости закона импульса:

1)

2)

13) Центр инерции – это геометрическая точка С, характеризующая движение тела или системы частиц как целого, координаты которой: где mi b ri – масса и радиус-вектор i-й материальной точки. аналогично y,z

Теорема о движении центра масс(инерции): центр масс системы материальных точек движется как материальная точка, масса которой равна суммарной массе всей системы, а действующая сила – геометрической сумме всех внешних сил, действующих на все точки системы.

14) Движение тел с переменной массой t:m,t+dt m+dm v+dv dm<0 (v и р - вектора)

d̃p=Fdt

d̃p = [(m+dm) (ṽ+dv)+v2m2]- mv

d̃p=mv+mdv+vdm+dmdv+v2dm2-mv= mdv+vdm+v2dm2

dm=–dm2

vотн=v2–v (mdv)/dt=(dm/dt)vотн+F ­­– ур-ние Мещерского

Fp= (dm/dt)vотн – реактивная сила

(mdv)/dt= Fp+F

15) Работой A, совершаемой постоянной силой называется физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла α между векторами силы F̃ и перемещения s̃: A=Fscosα dA=Fdr=Fdscosα= Fsds A=∫ Fsds

Работа силы, совершаемая в единицу времени, называется мощностью. Мощность P это физическая величина, равная отношению работы A к промежутку времени t, в течение которого совершена эта работа:

P=A/t [Вт=дж/с]

16) Кинетическая энергия (энергия механического движения) происходит под действием силы F и равна работе, совершенной этой силой. Изменение кинетической энергии происходит за счет работы внешних сил.

dWk = dA = Fdr ; dr = vdt ; dWk = Fdr = F v dt = vdP

F = dP / dt = 1/m * vdP = d(P[ст.2] / 2m) ; dWk = d(P[ст.2] / 2m) ;

Wk = P[ст.2] / 2m = mv(ст.2) / 2

17) Консервативные и неконсервативные силы.

Консервативными силами наз силы работа которых не зависит от траектории движения тела, а зависит только от начального и конечного положения тела. Для консервативной силы работа по перемещению тела по замкнутой траектории равна нулю.

A = (интеграл с кружком в центре) Fdt=0 – условие потенциальной силы.

В противном случае сила называется диссепативной. Дессипативная сила зависит от скорости точек и совершает отрицательную работу.

N = dA / dtмгновенная мощность

Неконсервативные силы действующие силы при перемещении тела из одного положения в другое зависит от формы траектории движения.

Потенциальная энергия – это механическая энергия системы тел определяемая их взаимным положением и характером сил взаимодействия между ними.

18) Закон сохранения энергии – энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного типа в другой.

Все законы сохранения связаны с определенными свойствами симметрии пространства и времени. Закон сохранения импульса связан с однородностью пространства, т.е. вид физических знаков не изменяется при параллельном переносе в пространстве системы отсчета. Закон сохранения энергии связан с однородностью времени, т.е. выбор начала отсчета времени не изменяет физических законов или физические законы инвариантны относительно выбора начала отсчета времени.

19) Соударение тел. Существует 2 вида предельных ударов: абсолютно упругий и абсолютно неупругий.

Абсолютно упругим ударом называется столкновение тел, в результате которого их внутренние энергии не меняются. Рассмотрим центральный удар двух шаров, движущ-ся навстречу друг другу:

m1v1+m2v2=m1u1+m2u2 и (m1v12)/2+(m2 v22)/2=(m1u12)/2+(m2 u22)/2

u1=[(m1-m2)v1+2m2v2]/(m1 +m2) u2=[(m2-m1)v2+2m1v1]/(m1+m2)

Абсолютно неупругим ударом, называется столкновение двух тел, в результате которого они соединяются вместе и движутся дальше как одно тело. Рассмотрим абс. неупругий удар на примере столкновения двух шаров. Пусть они движутся вдоль прямой, соединяющей их центры, со скоростями v1 и v2 m1v1+m2v2=(m1+m2)V ? V=(m1v1+m2v2)/(m1+m2)

Кин. энергии системы до удара и после: K1=1/2(m1v12+m2v22) K2=1/2(m1+m2)V

20) Степени свободы — характеристики движения механической системы. Число степеней свободы определяет минимальное количество независимых переменных (обобщённых координат), необходимых для полного описания движения механической системы. Также число степеней свободы равно полному числу независимых уравнений, полностью описывающих динамику системы.

Простейшая механическая система — материальная точка в трёхмерном пространстве — обладает тремя степенями свободы, так как её состояние полностью описывается тремя пространственными координатами.

Абсолютно твёрдое тело обладает шестью степенями свободы, так как для полного описания положения такого тела достаточно задать три координаты центра масс и три угла, описывающих ориентацию.

Реальные тела обладают огромным числом степеней свободы (порядка числа частиц, из которых состоит тело). Однако в большинстве ситуаций оказывается, что наиболее важны лишь несколько «коллективных» степеней свободы, характеризующих движение центра масс тела, его вращение, его деформацию, его макроскопические колебания.

21) Моментом силы относительно неподвижной точки О называется векторная величина, равная векторному произведению радиус-вектора r, проведенного из точки О в точку приложения силы А, на вектор силы. М=Fr Модуль момента силы: М= Fr sin a=Fl

Где а – угол между векторами r и F, l – длина перпендикуляра опущенного из точки О на линию действия силы и называемого плечом силы. При переносе точки приложения силы вдоль линии ее действия, момент этой силы относительно одной и той же неподвижной точки О не изменяется. Если линия действия силы проходит через точку О, то момент силы относительно этой точки равен 0.

Моментом силы относительно неподвижной оси а называется скалярная величина , равная проекции на эту ось вектора М момента силы F Относительно произвольной точки О оси а. Значение момента Ма не зависит от выбора положения точки О на оси а. Если линия действия силы пересекает ось или параллельна ей, то момент силы относительно этой оси равен 0. Результирующий момент относительно неподвижной оси а равен алгебраической сумме моментов относительно этой оси всех сил системы.

22) Движение твердого тела

Условие равновесия твердого тела. Всякое движение твердого тела можно представить как сумму поступательного и вращательного движения. Отсюда вытекает 2 условия равновесия твердого тела: 1) F1+…+Fn = 0 – тело не движется поступательно ; 2) M1 +… Mk= 0 – тело не вращается.

23) Угловой скоростью называется вектор­ная величина, равная первой производной угла поворота тела по времени: омега=lim(при дельта t стрем к 0)(дельта фи/дельта t)= dфи/dt

Угловым ускорением называется век­торная величина, равная первой производ­ной угловой скорости по времени: E(эпсиолонт)=dфи/dt

24) Моментом инерции матерьяльной точки относительно оси называется величина J = m r2. Где r – расстояние от точки до оси вращения.

К = m*v2/ 2. Если тело состоит из нескольких материальных точек, то момент его инерции будет равен сумме моментов инерций этих точек. Эта формула справедлива для дискретного распределения масс. В случае непрерывного распределения масс J = (интеграл) r2 dm

25) Момент инерции стержня:J = 1/3 m l2

Момент инерции тонкого обруча: J = m R2

Момент инерции диска: J = 0,5mR2

Момент инерции тонкого шара: J = 2/5 m R2

Момент инерции полого цил: J = (m R12+R21)

Момент инерции тонкого стержня: J = 1/12 m l2

26) Теорема Штейнера: Момент инерции тела относительно произвольной оси равен сумме момента инерции Jc относительно оси,параллельн данной и проходящей через центр масс тела,и произведения массф тела на квадрат расстояния между I = Iс + md2.

27) Кинетическая энергия вращающегося тела. Тело массой m, движущееся по окружности радиуса r со скоростью V, обладает кинетической энергией:

Используя связь между угловой и линейной скоростью движения, получим:

Если размеры тела малы по сравнению с радиусом окружности, то, как следует из выражений (1) и (2), кинетическая энергия вращающегося тела равна Это выражение, полученное для одного частного случая, в действительности справедливо для любого вращательного движения.

Если тело одновременно совершает поступательное и вращательное движение, то его полная кинетическая энергия складывается из кинетической энергии поступательного и вращательного движения:

Это же тело может иметь еще и потенциальную энергию ЕP, если оно взаимодействует с другими телами. Тогда полная энергия равна:

28) Вращательное движение это движение, при котором все точки тела описывают концентрические окружности, центры которых лежат на одной прямой, называемой осью вращения.

Это основное уравнение динамики вращательного движения тела: угловое ускорение вращающегося тела прямо пропорционально сумме моментов всех действующих на него сил относительно оси вращения тела и обратно пропорционально моменту инерции тела относительно этой оси вращения.Ускорению поступательного движения тела а соответствует угловое ускорение вращательного движения έ. Аналогом силы F при поступательном движении, является момент силы М во вращательном движении, а аналогом массы тела m при поступательном движении, служит момент инерции тела I при вращательном движении.

Основное уравнение динамики вращательного движения. Wk = 1/2 J * w(ст.2) ; dWk = 1/2 J 2w dw = Jwdw ; dWk = dA ; M dФИ = Jwdw;

M dФИ/dt = Jw dw/dt ; w = dФИ/dt ; E = dw/dt ; M w = J w E ; M = J E (M,E - вектора). Основное уравнение динамики вращательного движения. Это аналог 2го закона Ньютона для вращательного движения. (F-M, m-J, a-E).

29) Моментом импульса (моментом количества движения) материальной точки относительно неподвижной точки О называется геометрическая сумма L моментов импульса относительно той же точки всех материальных точек системы.

Моментом импульса системы относительно неподвижной оси называется величина равная проекции на эту ось вектора момента импульса системы относительно какой либо точки принадлежащей этой оси. Выбор положения точки О на оси а не влияет на численное значение L.

31) Закон сохранения момента импульса — векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной в случае равновесия системы. В соответствии с этим, момент импульса замкнутой системы относительно любой неподвижной точки не изменяется со временем.

32) Неинерциальная система отсчета- любая система отсчёта, которая движется как-либо ускоренно, или же вращается относительно инерциальной системы отсчета. Неинерциальность системы отсчета учитывают введением так называемых сил инерции.

34) Центробежная сила инерции - сила, с которой связь действует на материальную точку, равномерно движущуюся по окружности, в системе отсчета, связанной с этой точкой.

Центробежная сила инерции приложена к движущейся материальной точке и направлена по радиусу вращения от центра.

35) Кориолисова сила - одна из сил инерции; вводится для учета влияния вращения подвижной системы отсчета на относительной движение материальной точки. К.с. равна произведению массы точки на ее Кориолиса ускорение и направлена противоположно этому ускорению. Эффект, учитываемый К.с. состоит в том, что во вращающей системе отсчета материальная точка движущаяся непараллельно оси этого вращения, отклоняется по направлению, перпендикулярному к ее относительной скорости, или оказывает давление на тело, препятствующее этому отклонению.

36) Механическими колебаниями называют дви­жения тела, повторяющиеся точно или приблизи­тельно через одинаковые промежутки времени. Основ­ными характеристиками механических колебаний являются: смещение, амплитуда, частота, период. Смещение — это отклонение от положения равнове­сия. Амплитуда — модуль максимального отклоне­ния от положения равновесия. Частота — число полных колебаний, совершаемых в единицу времени. Период — время одного полного колебания, т. е. ми­нимальный промежуток времени, через который происходит повторение процесса. Период и частота связаны соотношением: v = 1/T.

Простейший вид колебательного движения — гармонические колебания, при которых колеблю­щаяся величина изменяется со временем по закону синуса или косинуса: y=sin(x) y=cos(x).

38) Сложение взаимно- перпендикулярных колебаний, фигуры Лиссажу.

Пусть математическая точка совершает колебания вдоль оси x и оси y, эти колебания одновременны, поэтому математическая точка будет двигаться по криволинейной траектории форма, которой зависит от разности фаз обоих колебаний.

подставим во второе

Ур-ние при этом представив cos по формуле

:

При сложении этих колебаний получаем ур-ние: - это Ур-ние

эллипса, оси которого ориентированы произвольно относительно координатных осей x и y.

Когерентное поляризованное движение.

39) Пружинный маятник — механическая система, состоящая из пружины с коэффициентом упругости (жёсткостью) k (закон Гука), один конец которой жёстко закреплён, а на втором находится груз массы m.

Физический маятник - абсолютно твердое тело, соверщающее малые колебания под действием силы тяжести вокруг неподвижной горизотнальной оси, не проходящей через его центр тяжести

Математическим маятником называют тело небольших размеров, подвешенное на тонкой нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела.

40) x= A0 e-βt cos(ω’t+α)

в котором - ци­кли­ческая частота свободных за­ту­ха­ющих колебаний; A0 e-βt - ам­пли­туда колебаний, убывающая с те­чением времени по экспоненте; A0- начальная амплитуда. Величина β=r/(2m) характеризует скорость затухания. Она называется коэф­фи­ци­ентом затухания.

Скорость затухания харак­те­ри­зуют и двумя другими вели­чинами:

1) декрементом затухания = AN / AN+1 = e Т, равным отно­ше­нию двух соседних (отстоящих по времени на период T) ампли­туд;

2) логарифмическим декре­мен­том затухания, равным, по опре­делению, натуральному ло­га­рифму от декремента затухания: = ln = T . (6.11)

Оказывается, = 1/Ne , где Ne - число колебаний, за которое амплитуда уменьшается в е раз.

41) Жидкостью называется агрегатное состояние вещества, промежуточное между твердым и газообразным. Жидкость характеризуется следующими свойствами: 1) сохраняет объем; 2) образует поверхность; 3) обладает прочностью на разрыв; 4) принимает форму сосуда; 5) обладает текучестью. Свойства жидкости с 1) по 3) подобны свойствам твёрдых тел, а свойство 4) - свойству газа.

Идеальная жидкость - жидкость, между частицами которой отсутствуют силы внутреннего трения. Вследствие этого такая жидкость не сопротивляется касательным силам сдвига и силам растяжения. Идеальная жидкость совершенно не сжимается, она оказывает бесконечно большое сопротивление силам сжатия. Такой жидкости в природе не существует - это научная абстракция, необходимая для упрощения анализа общих законов механики применительно к жидким телам.

Кинематическая вязкость жидкости:v=μ/ρ где μ- динамическая вязкость жидкости, ρ-плотность ж.

42) Уравнения равновесия и движения жидкости. Вес жидкости влияет на распределение давления внутри покоящейся несжимаемой жидкости. При равновесии жидкости давление по горизонтали всегда одинаково, иначе не было бы равновесия. Поэтому свободная поверхность покоящейся жидкости всегда горизонтальна вдали от стенок сосуда. Если жидкость несжимаема, то ее плотность не зависит от давления. Тогда при поперечном сечении S столба жидкости, его высоте h и плотности ρ вес ,P= ρgSh а давление на нижнее основание p=P/S= ρgSh/S= ρgh т. е. давление изменяется линейно с высотой. (Давление называется гидростатическим давлением.)

Cила давления на нижние слои жидкости будет больше, чем на верхние, поэтому на тело, погруженное в жидкость, действует выталкивающая сила, определяемая законом Архимеда: на тело, погруженное в жидкость (газ), действует со стороны этой жидкости направленная вверх выталки­вающая сила, равная весу вытесненной телом жидкости (газа):FA= ρgV где ρ - плотность жидкости, V- объём погруженного в жидкость тела.

44) Идеальный газ – это модель, которая во многих случаях с достаточно хорошей точностью описывает поведение газа. Идеальный газ – это газ, молекулы которого имеют пренебрежительно малый объем и не взаимодействуют на расстоянии. Молекулы идеального газа взаимодействуют друг с другом только в момент соударения. Причем соударение считается абсолютно упругим. Эти предположения (отсутствие взаимодействия, абсолютно упругие соударения) позволяют утверждать, что внутренняя энергия идеального газа определяется суммой кинетических энергий отдельных частиц, причем эта кинетическая энергия не переходит ни в какие другие виды энергии. Опытным путем было установлено, что параметры состояния газа удовлетворяют условию PV / T = const ; зависящему от количества вещества ; PV / T = МЮ R ; (R – универсальная газовая постоянная = 8,31 дж/моль к) ; PV = МЮ RT – уравнение Менделеева-Клайперона.

1) V = const изохорный процесс Закон Шарля: р1/Т1= р2/Т2

2) T = const изотермический закон Бойля-Мариотта p3*V3=p4*V4

3) P = const изобарный процесс закон Гей-Люссака: V4/T4=V1/T1

4) Q = const Адиабатный Уравнение Пуассона: p1V1γ=p2V2γ T2/T1=(V1/V2)^(γ-1) T2/T1=(p2/p1)^( (γ-1)/ γ)

45) В основе молекулярно-кинетической теории лежат три основных положения:

1.Все вещества – жидкие, твердые и газообразные – образованы из мельчайших частиц – молекул, которые сами состоят из атомов («элементарных молекул»). Молекулы химического вещества могут быть простыми и сложными, т.е. состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы.

2.Атомы и молекулы находятся в непрерывном хаотическом движении.

3.Частицы взаимодействуют друг с другом силами, имеющими электрическую природу. Гравитационное взаимодействие между частицами пренебрежимо мало.

46) Относительной атомной массой наз. Отношение массы m0 атома к а.е.м.: Mr=m0/(1/12 moc)

Где Атомная единица массы 1а.е.м.= 1/12moc=1.66*10-27 кг, где m0С - масса атома изотопа углерода С12

Относительная молекулярная масса сложного вещества определяется как сумма относительных атомных масс всех атомов, входящих в состав данного вещества.

Молярная масса – это масса вещества, взятого в колисестве v=1моль: M=m0NA

Масса вещества: m=m0N=m0vNA=vM

Оценим размеры молекулы, считая, что молекулы шарики.

Vшара=4/3πR3; следовательно, используя понятия плотности и молярной массы получим:

49) Распределения Максвелла молекул по скоростям.

Средняя квадратичная скорость характеризует среднюю интенсивность движения, ясно, что при хаотическом движении молекулы движутся с различными скоростями. Очевидно, что число молекул с очень маленькими скоростями, как и число молекул со скоростями сравнительно невелико. Основное количество молекул имеет скорости близкие к КВ Распределение по скоростям установил Максвелл. Для этого он ввел функцию распределения f(). Физический смысл этой функции заключается в том, что она позволяет вычислить число молекул dN движущихся со скоростями в интервале (,+d) dN = f()d

В конечном интервале (1,2):

50)Барометрическая формула определяет зависимость давления или плотности газа от высоты в поле тяжести. Для идеального газа, имеющего постоянную температуру Т и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения g одинаково), Барометрическая формула имеет следующий вид:

р = p0exp [-gm.(h - h0)/RT] где р — давление газа в слое, расположенном на высоте h, p0 — давление на нулевом уровне (h = h0), m — молекулярная масса газа, R — газовая постоянная, Т — абсолютная температура.

В присутствии гравитационного поля (или, в общем случае, любого потенциального поля) на молекулы газа действует сила тяжести. В результате, концентрация молекул газа оказывается зависящей от высоты в соответствии с законом распределения Больцмана:

n = n0exp( -mgh / kT )

где n - концентрация молекул на высоте h, n0 - концентрация молекул на начальном уровне h = 0, m - масса частиц, g - ускорение свободного падения, k - постоянная Больцмана, T - температура.

51) Внутренняя энергия складывается из кинетической энергии частиц и потенциальной энергии взаимодействия частиц системы. Внутренняя энергия является однозначной функцией состояния системы. Это означает что изм. внутр. эн. при переходе из сост. 1 в сост. 2 не зависит от вида процесса перехода

U=(i/2)(m/M)RT i=3 – одноатомный газ; i=5 – двухатомный; i=6 трех- и более.

Макроскопическая работа – это работа совершаемая системой при изменении внешних параметров не явл. функцией состояния, т.к. работа зависит от вида процесса перехода. A=Fdx; F=pS; A=pSdx=pdV; A>0 система совершает работу; A<0 над системой сов. работа.

52) Первый закон термодинамики: Количество теплоты Q, сообщенное термодинамической системе, расходуется на изменение внутренней энергии U системы и на совершение системой механической работы А. Q=∆U+A

53) Теплоёмкость тела (C) — физическая величина, определяющая отношение бесконечно малого количества теплоты δQ, полученного телом, к соответствующему приращению его температуры δT: C=dQ/dT [Дж/К]

Теплоемкостью какого-либо тела называется величина равная количеству тепла, которое нужно сообщить телу, чтобы повысить его температуру на 1К. Теплоемкость бывает 2-х видов:

1. Удельная теплоемкость (величина, равная количеству тепла, которое нужно сообщить телу, чтобы нагреть 1 кг на 1 К). Суд=С/m [Дж/(кг*К)]

2. Молярная теплоемкость (количество тепла, которое необходимо для нагревания 1 моля вещества на 1 К). См=С/М [Дж/(моль*К)]

Все теплоемкости зависят от условий, при которых происходит нагревание тела.

Зависимость теплоемкости от термодинамич. процесса:

1)Изотермический Т=const Cм=+–∞

2)Изохорный V=const δА=0 δQ=(i/2)γRdT Cмv=(i/2)R

3)Изобарный р=const δA=VRdT+γRdT Cмр=(i/2)R+R=((i+2)/2)R Cмр= Cмv +R

Для любого идеального газа справедливо соотношение Майера: Cp–Cv=R где R-универсальная газовая постоянная, Ср –молярная теплоемкость при постоянном давлении, Сv- молярная теплоемкость при постоянном объеме. Уравнение Майера вытекает из первого начала термодинамики, примененного к изобарному процессу в идеальном газе: dQ=dU+δА dQ=CpdT δА=d(pV)=pdV=RdT. (уравнение Майера показывает, что различие теплоемкостей газа равно работе, совершаемой одним молем идеального газа при изменении его температуры на 1 K, и разъясняет смысл универсальной газовой постоянной R — механический эквивалент теплоты).