
- •Содержание
- •Тема 1. Основные понятия теплообмена 7
- •Тема 2. Теплопроводность 14
- •Тема 7. Теплообмен при фазовых превращениях 64
- •Тема 8. Теплообмен излучением 81
- •Тема 9. Основы теории массообмеНа 102
- •Введение
- •Тема 1. Основные понятия теплообмена
- •1.1 Температурное поле. Изотермическая поверхность.
- •1.2. Градиент температуры
- •1.3. Количество теплоты. Тепловой поток.Удельные тепловые потоки
- •1.4.Элементарные способы передачи теплоты (виды процессов теплообмена)
- •1.5. Сложный теплообмен. Теплоотдача и теплопередача
- •Тема 2. Теплопроводность
- •2.1. Основной закон теории теплопроводности. Закон (гипотеза) Фурье.
- •2.2. Энергетическая форма записи закона Фурье. Коэффициент температуропроводности
- •2.3. Дифференциальное уравнение теплопроводности (дифференциальное уравнение Фурье)
- •2.4. Условия однозначности, необходимые для решения уравнения Фурье
- •2.5. Начальные условия (ну)
- •2.6. Граничные условия (гу)
- •2.7. Методы решения краевой задачи в теории теплопроводности
- •Тема 3. Нестационарная теплопроводность в телах простейшей формы
- •3.1. Математическая формулировка задачи
- •Тема 4. Стационарная теплопроводность
- •4.1 Стационарная теплопроводность в плоской и цилиндрической стенках
- •Тема 5. Теплопередача
- •5.1. Теплопередача через плоскую стенку
- •5.2. Теплопередача через цилиндрическую стенку
- •5.3. Алгоритм расчета теплопередачи через непроницаемые стенки
- •5.4. Единая формула теплопередачи через стенки классической формы
- •5.5. Интенсификация теплопередачи
- •5.6.Тепловая изоляция
- •Тема 6. Конвективный теплообмен в однофазных средах
- •6.1. Основные понятия и определения
- •6.2. Дифференциальные уравнения конвективного теплообмена
- •6.3. Основные положения теории подобия
- •6.4. Основные критериальные уравнения
- •6.4.1. Конвективная теплоотдача при свободном движении текучей среды
- •6.4.2. Конвективная теплоотдача при вынужденном движении текучей среды в трубах и каналах
- •6.4.3. Конвективная теплоотдача при вынужденном внешнем обтекании тел
- •6.5. Алгоритм расчета коэффициента теплоотдачипо критериальным уравнениям
- •Тема 7. Теплообмен при фазовых превращениях
- •7.1. Теплоотдача при конденсации паров
- •7.2. Теплоотдача при кипении жидкостей
- •Тема 8. Теплообмен излучением
- •8.1. Основные понятия и определения
- •8.2. Тепловое излучение твердых тел
- •8.3. Основные законы излучения абсолютно черного тела (ачт)
- •8.4. Излучение реальных тел. Закон Кирхгофа.
- •8.4. Особенности излучения газов
- •8.5. Расчет результирующего лучистого потока тепла между телами. Экраны
- •Тема 9. Основы теории массообмеНа
- •9.1. Диффузионный пограничный слой
- •9.2. Массопроводность, массоотдача, массопередача
- •9.3 Критериальные уравнения массоотдачи
- •10. Теплообменные аппараты
- •10.1 Общие сведения о теплообменных аппаратах
- •10.1.1. Рекуперативные теплообменники
- •10.1.2. Регенеративные теплообменные аппараты
- •10.1.3. Аппараты смешивающего типа
- •10.2 Расчет теплообменных аппаратов
- •10.2.1. Уравнение теплового баланса. Уравнение баланса массы.
- •10.2.2 Средний температурный напор.
- •10.2.3 Уравнение теплопередачи.
- •10.2.4 Проверочный расчет теплообменного аппарата. Сравнение прямотока с противотоком.
- •10.2.5 Гидравлический расчет аппаратов.
- •10.2.6 Тепловой расчет регенеративных теплообменников
- •10.3 Методики расчет теплообменных аппаратов
- •10.3.1. Математическая модель рекуперативного теплообменного аппарата и алгоритм его поверочного расчета по методу n-e.
- •10.3.2. Основные закономерности процесса испарительного охлаждения воды в градирнях
- •10.3.3. Деаэрация воды
- •Основы процесса
- •Кинетика процесса деаэрации воды
- •Конструктивные особенности термических деаэраторов
- •Список основных обозначений
- •- Число Стантона. Литература
10.1.2. Регенеративные теплообменные аппараты
В регенеративных теплообменниках процесс переноса теплоты от горячего теплоносителя к холодному разделяется во времени на два периода и происходит при попеременном нагревании и охлаждении насадки. Теплообменники этого типа часто применяют для регенерации теплоты отходящих газов.
Характерным для регенеративных теплообменников является наличие твердых тел, которые попеременно соприкасаются с горячим и холодным теплоносителями. При соприкосновении с горячим теплоносителем твердое тело нагревается; соприкасаясь с холодным теплоносителем, отдает ему свое тепло.
Разделяют непрерывно действующие и периодически действующие регенеративные теплообменники. Непрерывно действующими регенеративными теплообменниками являются нагревательные установки с циркулирующим зернистым материалом. Регенеративный теплообменник периодического действия для охлаждения воздуха изображен на рис. 10.8. Он состоит из двух цилиндрических заполненных насадкой аппаратов 1 диаметром до 1 м и высотой рабочей части до 3 м. Элементы насадки представляют собой диски, смотанные из гофрированной алюминиевой ленты высотой 30—35 мм, толщиной 0,2— 0,4 мм, высотой гофр 4 мм. Поверхность 1м3 такой насадки 1000—2000 м2. Теплопередача осуществляется в два периода. В период охлаждения через аппарат (левый на рисунке) продувают среду I, которая охлаждает насадку, а сама нагревается. В период нагревания через аппарат (правый на рисунке) пропускают среду II, которая охлаждается, нагревая при этом насадку. Потоки переключаются с помощью задвижек 3 и клапанов, расположенных в клапанных коробках 2.
Рис.10.8 Регенеративный теплообменник
10.1.3. Аппараты смешивающего типа
В смесительных аппаратах осуществляется непосредственный контакт двух или более веществ, находящихся в жидком или газообразном состоянии.
Конденсаторы смешения. В зависимости от способа вывода из аппаратов потоков различают мокрые и сухие конденсаторы смешения.
Рис. 10.9 Мокрый прямоточный конденсатор смешения
В мокрых конденсаторах охлаждающую воду, конденсат и неконденсирующиеся газы (воздух) отводят из нижней части аппарата совместно при помощи мокровоздушного насоса, в сухих охлаждающая вода с конденсатом отводится из нижней части аппарата, а воздух отсасывается вакуум насосом из верхней части.
На рис.10.9 изображен мокрый прямоточный конденсатор смешения. В корпус 1 конденсатора через патрубок 3 на крышке 2 вводится конденсирующийся пар. Охлаждающая вода подается через распыляющее сопло 4. Нагретая вода вместе с конденсатом и воздухом выводится через патрубок 5 мокровоздушным насосом 6.
10.2 Расчет теплообменных аппаратов
10.2.1. Уравнение теплового баланса. Уравнение баланса массы.
Будем рассматривать аппараты с двумя теплоносителями. Нижние индексы «1» и «2» будут характеризовать параметры горячего и холодного теплоносителей. Верхний индекс «один штрих» будет соответствовать условиям на входе, а «два штриха» - на выходе.
Рассматривая контрольный объем, граничная поверхность которого совпадает с граничной поверхностью теплообменного аппарата, на основании первого закона термодинамики можно записать:
,
(10.1)
Где
-массовые
расходы теплоносителей, кг/с;
-
удельная энтальпиякДж/кг.
Уравнение (10.1) представляет собой уравнение теплового баланса. Оно справедливо в случае стационарного режима работы аппарата и в том случае, если можно пренебречь потерями теплоты в окружающую среду и изменением кинетической энергии теплоносителей.
Количество теплоты, передаваемое через единицу времени через поверхность теплообмена от горячего теплоносителя к холодному (тепловая мощность аппарата), равно изменению энтальпии теплоносителей, т.е.
(10.2)
Если
и
,
то вместо (10.2) получим
(10.3)
где
-
средняя массовая температура.
Для
удобства примем:
и
.
Величины
иногда называют водяными эквивалентами.
Если
в аппарате происходит массообмен между
теплоносителями, то согласно закону
сохранения массы
(10.4)
Соотношение
10.4 является уравнением баланса массы
теплоносителя. Оно справедливо и в том
случае, если в аппарате происходят
химические реакции. следует отметить,
что при наличии массообмена
,
но справедливо равенство
,
где
-
масса
-го
компонента, перешедшая в единицу времени
из первого теплоносителя во второй
(через межфазную поверхность).
Уравнение баланса массы для первого и второго теплоносителя
;
(10.5)
Пусть
-
массовые концентрации
-го
компонента в первом теплоносителесоответственно
на входе и выходе аппарата, а
- то же , но для второго теплоносителя.
Тогда уравнение баланса массы будет
иметь вид:
,
Выражение справедливо при отсутствии химических реакций.