
- •Содержание
- •Тема 1. Основные понятия теплообмена 7
- •Тема 2. Теплопроводность 14
- •Тема 7. Теплообмен при фазовых превращениях 64
- •Тема 8. Теплообмен излучением 81
- •Тема 9. Основы теории массообмеНа 102
- •Введение
- •Тема 1. Основные понятия теплообмена
- •1.1 Температурное поле. Изотермическая поверхность.
- •1.2. Градиент температуры
- •1.3. Количество теплоты. Тепловой поток.Удельные тепловые потоки
- •1.4.Элементарные способы передачи теплоты (виды процессов теплообмена)
- •1.5. Сложный теплообмен. Теплоотдача и теплопередача
- •Тема 2. Теплопроводность
- •2.1. Основной закон теории теплопроводности. Закон (гипотеза) Фурье.
- •2.2. Энергетическая форма записи закона Фурье. Коэффициент температуропроводности
- •2.3. Дифференциальное уравнение теплопроводности (дифференциальное уравнение Фурье)
- •2.4. Условия однозначности, необходимые для решения уравнения Фурье
- •2.5. Начальные условия (ну)
- •2.6. Граничные условия (гу)
- •2.7. Методы решения краевой задачи в теории теплопроводности
- •Тема 3. Нестационарная теплопроводность в телах простейшей формы
- •3.1. Математическая формулировка задачи
- •Тема 4. Стационарная теплопроводность
- •4.1 Стационарная теплопроводность в плоской и цилиндрической стенках
- •Тема 5. Теплопередача
- •5.1. Теплопередача через плоскую стенку
- •5.2. Теплопередача через цилиндрическую стенку
- •5.3. Алгоритм расчета теплопередачи через непроницаемые стенки
- •5.4. Единая формула теплопередачи через стенки классической формы
- •5.5. Интенсификация теплопередачи
- •5.6.Тепловая изоляция
- •Тема 6. Конвективный теплообмен в однофазных средах
- •6.1. Основные понятия и определения
- •6.2. Дифференциальные уравнения конвективного теплообмена
- •6.3. Основные положения теории подобия
- •6.4. Основные критериальные уравнения
- •6.4.1. Конвективная теплоотдача при свободном движении текучей среды
- •6.4.2. Конвективная теплоотдача при вынужденном движении текучей среды в трубах и каналах
- •6.4.3. Конвективная теплоотдача при вынужденном внешнем обтекании тел
- •6.5. Алгоритм расчета коэффициента теплоотдачипо критериальным уравнениям
- •Тема 7. Теплообмен при фазовых превращениях
- •7.1. Теплоотдача при конденсации паров
- •7.2. Теплоотдача при кипении жидкостей
- •Тема 8. Теплообмен излучением
- •8.1. Основные понятия и определения
- •8.2. Тепловое излучение твердых тел
- •8.3. Основные законы излучения абсолютно черного тела (ачт)
- •8.4. Излучение реальных тел. Закон Кирхгофа.
- •8.4. Особенности излучения газов
- •8.5. Расчет результирующего лучистого потока тепла между телами. Экраны
- •Тема 9. Основы теории массообмеНа
- •9.1. Диффузионный пограничный слой
- •9.2. Массопроводность, массоотдача, массопередача
- •9.3 Критериальные уравнения массоотдачи
- •10. Теплообменные аппараты
- •10.1 Общие сведения о теплообменных аппаратах
- •10.1.1. Рекуперативные теплообменники
- •10.1.2. Регенеративные теплообменные аппараты
- •10.1.3. Аппараты смешивающего типа
- •10.2 Расчет теплообменных аппаратов
- •10.2.1. Уравнение теплового баланса. Уравнение баланса массы.
- •10.2.2 Средний температурный напор.
- •10.2.3 Уравнение теплопередачи.
- •10.2.4 Проверочный расчет теплообменного аппарата. Сравнение прямотока с противотоком.
- •10.2.5 Гидравлический расчет аппаратов.
- •10.2.6 Тепловой расчет регенеративных теплообменников
- •10.3 Методики расчет теплообменных аппаратов
- •10.3.1. Математическая модель рекуперативного теплообменного аппарата и алгоритм его поверочного расчета по методу n-e.
- •10.3.2. Основные закономерности процесса испарительного охлаждения воды в градирнях
- •10.3.3. Деаэрация воды
- •Основы процесса
- •Кинетика процесса деаэрации воды
- •Конструктивные особенности термических деаэраторов
- •Список основных обозначений
- •- Число Стантона. Литература
Тема 9. Основы теории массообмеНа
Под массообменом понимают самопроизвольный необратимый процесс переноса массы определенного компонента в пространстве с неоднородным полем химического потенциала этого компонента. В простейшем случае неоднородным является поле концентрацией или парциального давления, приэтом процесс массообмена имеет определенную направленность. Например, в смеси с одинаковой температурой и давлением процесс массопереноса (диффузии) направлен к выравниванию концентраций в системе. При этом происходит перенос вещества из области с большей концентрацией. Диффузия – это перенос вещества молекулярным или молярным путем. Молекулярная диффузия – это перенос вещества в смеси, обусловленный тепловым движением микрочастиц. Молярный перенос неразрывно связан с макродвижением самой смеси, т.е. конвекцией. Массообмен, обусловленный совместным действием молярной диффузии и конвективного переноса вещества, называется конвективным массообменом. Потоком массы называется количество вещества, проходящего в единицу времени через данную поверхность в направлении нормали к ней. Он обозначается через I и измеряется в кг/с. Плотность потока массы j – это поток массы, проходящий через единицу поверхности: j=dI/dF.
Причиной возникновения потока массы являются:
- неравномерное распределение концентрации вещества, называемое
концентрационной диффузией;
- неоднородное температурное поле обуславливает термодиффузию;
- неоднородное поле давления определяет возникновение бародиффзузии.
Если
в двухкомпонентной смеси отсутствует
макродвижение, а температура и давление
остаются постоянными по всему объему
системы, то плотность потока массы
одного из компонентов, обусловленного
молекулярной диффузией, определяется
законом Фика:
,
(9.1)
где
D –
коэффициент диффузии, м2
/с; сi
– местная концентрация данного
компонента, равная отношению массы
компонента к объему смеси, кг/м3
;
-
градиент концентрации (вектор), кг/м4
.
В рассматриваемом случае движущей силой является градиент концентрации. Знак „ -” в выражении обусловлен тем, что плотность потока массы направлена в сторону убывания концентрации, а градиент концентрации – в противоположную сторону.
Закон Фика описывает концентрационную диффузию, в результате
которой переносится основная доля вещества. Перенос вещества осуществляется также под действием градиента температур. Такой перенос вещества называется термодиффузией (эффект Соре). Молекулы компоненты с большей массой стремятся перейти в область низких температур. При одинаковых массах молекул, то в холодную область стремятся перейти более крупные молекулы. В результате термодиффузии возникает градиент концентрации.
Градиент концентрации является движущей силой концентрационной диффузии, величина его определяет интенсивность этого процесса. Из кинетической теории газов известно (и опыты это подтверждают), что величина D возрастает с увеличением температуры и уменьшается с ростом давления газа. Ее значение зависит и от соотношения компонентов, но зависимость эта слабая, ее учитывают очень редко. Вообще же коэффициент D относится к классу физконстант, значения его определяют экспериментально и приводят в соответствующих справочниках.
Массовая
концентрация
представляет собой собственно говоря
плотность данного компонента. Считая,
что компоненты смеси находятся в
идеальногазовом состоянии и для каждого
из них применимо уравнение состояния
,
формулу (9.1) можно записать через градиент
парциального давления.
где Dpi – коэффициент молекулярной диффузии, отнесенный к градиенту авления. Ясно, что Dpi = Di/RiT и Di = Di/R1T = Di/R2T = D, откуда видно, что коэффициент диффузии одинаков для обоих компонент смеси.
Если смесь неоднородна и температура ее различна в различных ее точках, то возникает термодиффузия: более тяжелые и крупные молекулы одного из компонентов стремятся перейти в холодные области, легкие и мелкие другого – в теплые (это называют эффектом Соре). Если в смеси имеются области с разным давлением, то происходит бародиффузия, когда компонент с тяжелыми молекулами устремляется в область повышенного давления, а другой компонент – в область пониженного давления. Механизмом этих явлений вскрывает молекулярно-кинетическая теория, но мы не будем в нее углубляться, ибо это предмет общефизической теории. В общем случае, при наличии всех трех видов диффузии, термо- и бародиффузии создают определенный градиент концентраци, что вызывает противоположно направленный концентрационный массоперенос. Так что с течением времени возможно установление концентрационного равновесия и при наличии градиентов температуры и давления. При этом плотность потока массы определяют с учетом всех составляющих процесса
где Dt = ktD, Dp = kpD – коэффициенты термо- и бародиффузии; kt и kp – термодиффузионное и бародиффузионное отношения.
При конвективном массопереносе поток массы определяется скоростью w и плотностью компонента
Суммарный поток вещества в результате молекулярного и конвективного переносов будет
Вместе с массой переносится и энтальпия компонента
где hi – удельная энтальпия. Значит при наличии массообмена плотность теплового потока будет описываться следующим уравнением:
(9.2)
Здесь первое слагаемое учитывает перенос тепла теплопроводностью, второе – конвекцией, а третье – молекулярной диффузией.