
- •Содержание
- •Тема 1. Основные понятия теплообмена 7
- •Тема 2. Теплопроводность 14
- •Тема 7. Теплообмен при фазовых превращениях 64
- •Тема 8. Теплообмен излучением 81
- •Тема 9. Основы теории массообмеНа 102
- •Введение
- •Тема 1. Основные понятия теплообмена
- •1.1 Температурное поле. Изотермическая поверхность.
- •1.2. Градиент температуры
- •1.3. Количество теплоты. Тепловой поток.Удельные тепловые потоки
- •1.4.Элементарные способы передачи теплоты (виды процессов теплообмена)
- •1.5. Сложный теплообмен. Теплоотдача и теплопередача
- •Тема 2. Теплопроводность
- •2.1. Основной закон теории теплопроводности. Закон (гипотеза) Фурье.
- •2.2. Энергетическая форма записи закона Фурье. Коэффициент температуропроводности
- •2.3. Дифференциальное уравнение теплопроводности (дифференциальное уравнение Фурье)
- •2.4. Условия однозначности, необходимые для решения уравнения Фурье
- •2.5. Начальные условия (ну)
- •2.6. Граничные условия (гу)
- •2.7. Методы решения краевой задачи в теории теплопроводности
- •Тема 3. Нестационарная теплопроводность в телах простейшей формы
- •3.1. Математическая формулировка задачи
- •Тема 4. Стационарная теплопроводность
- •4.1 Стационарная теплопроводность в плоской и цилиндрической стенках
- •Тема 5. Теплопередача
- •5.1. Теплопередача через плоскую стенку
- •5.2. Теплопередача через цилиндрическую стенку
- •5.3. Алгоритм расчета теплопередачи через непроницаемые стенки
- •5.4. Единая формула теплопередачи через стенки классической формы
- •5.5. Интенсификация теплопередачи
- •5.6.Тепловая изоляция
- •Тема 6. Конвективный теплообмен в однофазных средах
- •6.1. Основные понятия и определения
- •6.2. Дифференциальные уравнения конвективного теплообмена
- •6.3. Основные положения теории подобия
- •6.4. Основные критериальные уравнения
- •6.4.1. Конвективная теплоотдача при свободном движении текучей среды
- •6.4.2. Конвективная теплоотдача при вынужденном движении текучей среды в трубах и каналах
- •6.4.3. Конвективная теплоотдача при вынужденном внешнем обтекании тел
- •6.5. Алгоритм расчета коэффициента теплоотдачипо критериальным уравнениям
- •Тема 7. Теплообмен при фазовых превращениях
- •7.1. Теплоотдача при конденсации паров
- •7.2. Теплоотдача при кипении жидкостей
- •Тема 8. Теплообмен излучением
- •8.1. Основные понятия и определения
- •8.2. Тепловое излучение твердых тел
- •8.3. Основные законы излучения абсолютно черного тела (ачт)
- •8.4. Излучение реальных тел. Закон Кирхгофа.
- •8.4. Особенности излучения газов
- •8.5. Расчет результирующего лучистого потока тепла между телами. Экраны
- •Тема 9. Основы теории массообмеНа
- •9.1. Диффузионный пограничный слой
- •9.2. Массопроводность, массоотдача, массопередача
- •9.3 Критериальные уравнения массоотдачи
- •10. Теплообменные аппараты
- •10.1 Общие сведения о теплообменных аппаратах
- •10.1.1. Рекуперативные теплообменники
- •10.1.2. Регенеративные теплообменные аппараты
- •10.1.3. Аппараты смешивающего типа
- •10.2 Расчет теплообменных аппаратов
- •10.2.1. Уравнение теплового баланса. Уравнение баланса массы.
- •10.2.2 Средний температурный напор.
- •10.2.3 Уравнение теплопередачи.
- •10.2.4 Проверочный расчет теплообменного аппарата. Сравнение прямотока с противотоком.
- •10.2.5 Гидравлический расчет аппаратов.
- •10.2.6 Тепловой расчет регенеративных теплообменников
- •10.3 Методики расчет теплообменных аппаратов
- •10.3.1. Математическая модель рекуперативного теплообменного аппарата и алгоритм его поверочного расчета по методу n-e.
- •10.3.2. Основные закономерности процесса испарительного охлаждения воды в градирнях
- •10.3.3. Деаэрация воды
- •Основы процесса
- •Кинетика процесса деаэрации воды
- •Конструктивные особенности термических деаэраторов
- •Список основных обозначений
- •- Число Стантона. Литература
5.5. Интенсификация теплопередачи
Рассмотрим два способа увеличения коэффициента теплопередачи, а, следовательно, и количества теплоты передаваемого через стенку – конструктивный и режимный.
А. Конструктивный способ интенсификации теплопередачи
Изменение конструкции теплопередающей поверхности с целью увеличения коэффициента теплопередачи можно осуществить за счет уменьшения термического сопротивления теплопроводности стенки и термического сопротивления теплоотдачи со стороны меньшего коэффициента теплоотдачи.
Для
уменьшения термического сопротивления
теплопроводности
стенки
необходимо уменьшить толщину стенки
и использовать материалы с высоким
коэффициентом теплопроводности
.
Термическое
сопротивление
теплоотдачи
можно уменьшить, если со стороны меньшего
увеличить поверхность теплообмена за
счет ее оребрения. Для доказательства
этого утверждения запишем единую формулу
теплопередачи при допущении малости
термического сопротивления теплопроводности
(
)
.
Пусть
.
Откуда следует, что при равенстве
площадей
термическое сопротивление теплоотдачи
около второй поверхности много больше
термического сопротивления теплоотдачи
около первой поверхности
или
.
Поэтому
для уменьшения
необходимо увеличить площадь F2
до выполнения условия
или
,
где
– площадь оребренной поверхности.
Профиль ребра может быть прямоугольной, треугольной, трапециевидной и, в общем случае, произвольной формы (см. рис.3.3).
а) плоская стенка (F1=F2) б) оребренная стенка (α2<α1; F2оребр>F1)
Рис. 5.3. Конструктивный способ интенсификации теплопередачи
за счет оребрения поверхности
Б. Режимный способ интенсификации теплопередачи
Выясним
влияние коэффициентов теплоотдачи
и
на величину коэффициента теплопередачи
k.
Для этого запишем формулу коэффициента
теплопередачи через плоскую стенку при
допущении малости термического
сопротивления теплопроводности стенки
(
)
,
где
– коэффициент теплопередачи, рассчитанный
при допущении
.
Рассмотрим два крайних случая соотношения коэффициентов теплоотдачи:
а)
если
,
(пусть
),
то в этом случае из последней формулы
следует, что
;
б)
если
,
(пусть
),
то в этом случае
.
Таким
образом, коэффициент теплопередачи не
может быть больше меньшего из коэффициентов
теплоотдачи, т.е.
.
На основании вышеизложенного можно сделать вывод о том, что для увеличения коэффициента теплопередачи необходимо увеличивать меньший коэффициент теплоотдачи за счет изменения режима движения теплоносителя.
5.6.Тепловая изоляция
Для уменьшения потерь теплоты многие сооружения приходится теплоизолировать, покрывая их стенки слоем материала с малой теплопроводностью (<0,2 Вт/(мК)). Такие материалы называются теплоизоляторами. Большинство теплоизоляторов состоит из волокнистой, порошковой и пористой основы, заполненной воздухом. Термическое сопротивление теплоизолятора создает воздух, а основа лишь препятствует возникновению естественной конвекции воздуха и переносу теплоты излучением.
Теплоизоляционные свойства материалов ухудшаются с увеличением плотности, температуры и влажности материала.
Для плоской стенки увеличение толщины слоя изоляции увеличивает ее термическое сопротивление R, в результате чего увеличивается суммарное термическое сопротивление теплопередачи Rk. Значение R1 и R2 при этом не меняется.
Для цилиндрической стенки увеличение толщины слоя изоляции так же увеличивает R, но одновременно уменьшает R2=1/d22 (d2 - наружный диаметр цилиндрической стенки). И при некоторых условиях нанесение изоляции на трубу может привести к увеличению теплопотерь.
Теплоизоляция цилиндрической поверхности эффективно работает только при условии:
,
где dkp - критический наружный диаметр;
из - коэффициент теплопроводности изоляции.