
- •1.3. Случайные погрешности и обработка результатов измерений
- •3.11.1 Метод суммы и разности напряжений
- •3.11.2 Нулевой метод
- •3.11.3 Метод преобразования фазового сдвига во временной интервал
- •1 Основы метрологии
- •1.1. Общие сведения о метрологии и измерениях
- •1.1.1. Основные термины и определения в области метрологии
- •1.1.2. Классификация измерений
- •1.1.3. Классификация методов измерения
- •1.1.4. Классификация погрешностей
- •1.2. Систематические погрешности измерений
- •1.2.1 Классификация и обнаружение систематических погрешностей
- •1.2.2. Способы уменьшения систематических погрешностей
- •До начала измерений:
- •2. В процессе измерений
- •1.3. Случайные погрешности и обработка результатов измерений
- •1.3.1. Распределения случайных величин и их числовые характеристики
- •1.3.2 Оценка погрешностей результатов прямых измерений
- •1.3.3 Оценка ско результата косвенного измерения
- •1.3.4 Суммирование неисключенных систематических погрешностей
- •1.3.5 Оценка суммарной погрешности результата измерения
- •1.3.6 Формы представления результатов измерений
- •1.3.7 Правила округления результата измерений и погрешности
- •2 Метрологическое обеспечение измерений
- •2.1 Структура метрологического обеспечения в Республике Беларусь
- •2.2 Передача размера единиц электрических физических величин
- •2.3 Международные организации по метрологии
- •2.3.1 Международная организация мер и весов
- •2.3.2 Международная организация законодательной метрологии
- •3 Технические методы и средства измерений
- •3.1 Классификация средств измерений
- •3.2 Метрологические характеристики средств измерений и их нормирование
- •3.3 Электрические измерения неэлектрических величин
- •3.3.1 Основные принципы и методы преобразования измерительной информации
- •3.3.2 Метрологические характеристики ип
- •3.3.3 Первичные измерительные преобразователи
- •3.3.4 Параметрические ип
- •3.3.4.1 Резистивные ип
- •3.3.4.2 Емкостные измерительные преобразователи
- •1 Ип с изменяемым расстоянием между пластинами.
- •2 Емкостный ип с переменной площадью пластин
- •3 Емкостный ип с изменяющимся положением диэлектрика.
- •3.3.4.3 Индуктивные измерительные преобразователи
- •3.3.5 Генераторные измерительные преобразователи
- •3.3.5.1 Индукционные магнитоизмерительные преобразователи
- •3.3.5.2 Сверхпроводниковые преобразователи
- •3.3.5.3 Измерительные преобразователи Холла
- •3.3.5.4 Преобразователи Гаусса
- •3.3.5.5 Пьезоэлектрические преобразователи
- •3.3.5.6 Термоэлектрические преобразователи
- •3.3.5.7 Фотоэлектрические преобразователи
- •3.3.5.8 Гальванические преобразователи
- •3.4 Измерение тока и напряжения
- •3.4.1 Измеряемые параметры тока и напряжения
- •3.4.2 Общие сведения об электромеханических приборах
- •3.4.3 Магнитоэлектрические измерительные приборы
- •3.5 Измерение тока на радиочастотах
- •3.5.1 Выпрямительные амперметры
- •3.5.2 Термоэлектрические амперметры
- •3.5.3 Фотоэлектрические амперметры
- •3.5.4 Расширение пределов измерения силы тока
- •3.5.5 Методическая погрешность при измерении силы тока
- •3.6 Измерение напряжения электронными аналоговыми вольтметрами
- •3.6.1 Аналоговые вольтметры прямого преобразования
- •3.6.2 Вольтметры переменного напряжения
- •3.6.3 Аналоговые вольтметры сравнения
- •3.6.4 Расширение пределов измерения напряжения
- •3.6.5 Методическая погрешность при измерении напряжения
- •3.6.6 Зависимость показаний вольтметров от формы кривой измеряемого напряжения
- •3.7 Измерение постоянного напряжения цифровыми вольтметрами
- •3.7.1 Вольтметры с прямым преобразованием
- •3.7.1.1 Цифровые вольтметры с время-импульсным преобразованием
- •3.7.1.2 Цифровые вольтметры с частотно-импульсным преобразованием
- •3.7.1.3 Цифровые вольтметры с кодо-импульсным преобразованием
- •3.8 Цифровые вольтметры переменного напряжения
- •3.9 Измерение частоты электромагнитных колебаний
- •3.9.1 Классификация приборов для измерения частоты и интервалов времени
- •3.9.2 Резонансные частотомеры
- •3.9.3 Измерение частоты гетеродинным методом
- •3.9.4 Метод дискретного счета. Электронно-счетные частотомеры
- •3.10 Исследование формы электрических сигналов
- •3.10.1 Структурная схема типового универсального электронного осциллографа (эо)
- •3.10.2 Цифровые осциллографы
- •3.10.3 Осциллографы смешанных сигналов
- •3.10.4 Осциллографические измерения
- •3.10.4.1 Измерение напряжений
- •3.10.4.2 Измерение временных параметров и параметров импульсов
- •3.10.4.3 Измерение частоты
- •3.10.4.4 Измерение фазовых сдвигов
- •3.11 Измерение фазового сдвига
- •3.11.1 Метод суммы и разности напряжений
- •3.11.2 Нулевой метод
- •3.11.3 Метод преобразования фазового сдвига во временной интервал
- •3.12 Измерение электрической мощности
- •3.12.1 Измерение вч и свч мощности
- •3.12.2.1 Измерение поглощаемой мощности
- •3.12.2.2 Измерение проходящей мощности
- •3.13 Автоматизация электрорадиоизмерений
- •3.13.1 Основные принципы автоматизации измерений
- •3.13.2 Типовая схема автоматизированного измерительного эксперимента
- •3.13.3 Применение микропроцессоров в электрорадиоизмерительных приборах
- •3.13.4 Двухканальный стробоскопический осциллограф
- •3.13.5 Измерительно-вычислительные комплексы
- •3.13.6 Информационно-измерительные системы
- •3.13.7 Измерительные системы
- •3.13.8 Системы автоматического контроля
- •3.13.9 Интерфейсы измерительных приборов
- •3.13.10 Виртуальные измерительные приборы: общие принципы построения и функционирования
- •4 Основы сертификации
- •4.1 Законодательные и нормативные документы в области качества. Государственная программа «Качество»
- •4.2 Международные стандарты серии исо 9000
- •4.3 Охрана окружающей среды (iso 14001)
- •4.4 Система менеджмента здоровья и безопасности (ohsas 18001:1999)
- •4.5 Система менеджмента социальной среды (sa 8000)
- •4.6 Законодательная и нормативная база подтверждения соответствия
- •4.7 Сертификация продукции
- •4.8 Декларирование соответствия продукции
- •4.9 Сертификация услуг
- •4.10 Сертификация компетентности персонала
- •4.11 Сертификация систем менеджмента качества
- •5 Основы стандартизации и технического нормирования
- •5.1 Основные цели и задачи тНиС
- •5.2 Основные понятия и определения в области технического
- •5.3 Принципы тНиС
- •5.4 Государственный Комитет по стандартизации Республики Беларусь (Госстандарт)
- •5.5 Виды технических нормативных правовых актов
- •5.6 Основные системы стандартов в радиоэлектронике
- •5.7 Основы классификации и кодирования информации
- •5.8 Универсальная десятичная классификация (удк)
- •5.9 Международная классификация изобретений
- •5.10 Методические основы стандартизации
- •5.10.1 Основные методы стандартизации
- •5.10.2 Виды стандартизации
- •5.11 Международная стандартизация
- •5.11.1 Международные организации, занимающиеся стандартизацией
- •5.11.2 Европейские организации по стандартизации: сеn, сеnelеc, етsi
- •5.12 Участие Республики Беларусь в работе международных организаций по стандартизации
- •5.12.1 Национальный центр по техническим барьерам в торговле,
- •5.12.2 Участие в работе технических комитетов iso и iec
- •5.13 Стандартизация в области информационно-коммуникационных
3.10 Исследование формы электрических сигналов
Приборы, предназначенные для исследования формы и спектра сигналов, составляют одну из многочисленных групп средств измерений.
Осциллографами называются приборы, предназначенные для наблюдения, записи или фотографирования электрических процессов, которые изменяются во времени, и измерения их параметров.
Анализаторами спектра называются устройства, позволяющие снимать зависимость амплитуд или мощностей гармонических колебаний, входящих в состав сложного сигнала, от частоты.
Осциллографы и анализаторы спектра относятся к подгруппе С и делятся на виды: С1 – осциллографы универсальные; С4 – анализаторы спектра; С7 – осциллографы скоростные и стробоскопические; С8 – осциллографы запоминающие; С9 – осциллографы специальные.
Наибольшее распространение получили универсальные электронные осциллографы, позволяющие исследовать различные электрические процессы в широком диапазоне амплитуд, длительностей и частот повторения сигналов. В зависимости от схемных решений их можно разделить на одноканальные, многоканальные и многофункциональные. Многоканальность достигается применением многолучевых электронно-лучевых трубок (ЭЛТ) и коммутаторов сигналов. В многофункциональных осциллографах с помощью сменных блоков реализуются такие дополнительные функции, как измерение электрических и неэлектрических величин, анализ спектра сигналов, исследование характеристик радиотехнических цепей и устройств.
В скоростных осциллографах исследование формы колебаний СВЧ и кратковременных импульсных сигналов обеспечивается с помощью специальной ЭЛТ бегущей волны (ТБВ). Полоса пропускания таких осциллографов может превышать 1 ГГц.
Стробоскопическим называется осциллограф, в котором для получения изображения формы сигнала используется упорядоченный или случайный отбор мгновенных значений исследуемого сигнала и осуществляется временное преобразование сигнала. Такие осциллографы позволяют исследовать сигналы с полосе частот от 0 до 10 ГГц.
Запоминающий осциллограф представляет собой прибор, в котором с помощью специального устройства, например ЭЛТ с памятью или электронного запоминающего устройства, сохраняется на определенное время исследуемый сигнал и при необходимости представляется для однократного или многократного визуального наблюдения или для дальнейшей обработки.
К специальным осциллографам относятся прибора, предназначенные для исследования сигналов сложной формы типа телевизионного. Наряду с основными блоками такие осциллографы имеют устройства выделения строки, восстановления постоянной составляющей и т.п. Такие осциллографы широко применятся при настройке телевизионной аппаратуры и кроме специальных измерений могут использоваться как широкополосные осциллографы.
3.10.1 Структурная схема типового универсального электронного осциллографа (эо)
Рисунок 3.6.1 – Обобщенная структурная схема типового одноканального универсального осциллографа.
Схема ЭО состоит из ЭЛТ, канала вертикального отклонения Y, канала горизонтального отклонения Х, канала яркости Z, калибраторов амплитуды и длительности, блока питания.
В современных осциллографах применяются ЭЛТ с электростатическим управлением лучом, имеющие достаточную широкополосность. На экране ЭЛТ воспроизводится изображение исследуемого процесса. Для этой цели необходимо, чтобы луч отклонялся по горизонтальной оси пропорционально времени, а по вертикальной оси – пропорционально исследуемому напряжению. Следовательно, ЭЛТ в основном влияет на такие важные технические характеристики ЭО, как погрешность измерений амплитудных и временных параметров, возможность наблюдения импульсов различной длительности, яркость свечения и продолжительность изображения на экране. Важными электрическими параметрами ЭЛТ являются чувствительность по вертикали и горизонтали, полоса пропускания и другие. К световым параметрам относятся ширина линии, скорость записи отдельных сигналов, яркость свечения экрана и времени послесвечения.
Для отсчета измеряемых величин перед экраном помещается сетка (шкала), которая наносится на прозрачный материал. Эта шкала имеет подсветку с использованием эффекта полного внутреннего отражения в толще материала. В некоторых ЭЛТ шкала наносится непосредственно на внутреннюю поверхность экрана, что позволяет уменьшить ошибки отсчета из-за параллакса. Площадь, ограниченная шкалой, определяет рабочую площадь экрана, в пределах которой гарантируются соответствующие технические характеристики ЭО.
Канал вертикального отклонения Y (канал сигнала) предназначен для согласования входа ЭО с исследуемым устройством, усиления исследуемых сигналов и преобразования их в два противофазных напряжения, которые подаются на вертикально отклоняющие пластины ЭЛТ. Канал состоит из входного устройства (ВУ), предварительного усилителя (ПУ), линии задержки (ЛЗ) и оконечного усилителя вертикального отклонения (УВО). ВУ предназначено для согласования входного сопротивления канала с исследуемым устройством и ослабления исследуемого сигнала для предотвращения перегрузки усилителя при больших значениях входного напряжения. В ПУ сосредоточены основные регулировки канала: плавная и ступенчатая регулировка усиления, балансировка усилителя постоянного тока и др. ЛЗ обеспечивает подачу исследуемого сигнала на вертикально отклоняющие пластины с задержкой относительно начала развертки, что дает возможность наблюдать фронт импульса и исключить нелинейность начального участка развертки. УВО необходим для получения осциллограммы слабых сигналов, т.е. для повышения чувствительности осциллографа.
1Канал горизонтального отклонения Х (канал развертки и синхронизации) предназначен для создания напряжения развертки горизонтали, усиления сигналов синхронизации и преобразования импульсов синхронизации (в импульсных осциллографах) любой полярности в импульсы определенной полярности, необходимые для запуска развертки. Канал содержит устройство синхронизации и запуска развертки, генератор развертки (ГР), усилитель горизонтального отклонения (УГО) и переключатель. Устройство запуска развертки служит для усиления и регулировки амплитуды, а также для изменения полярности синхронизирующих напряжений. С помощью ГР обеспечивается получение напряжения развертки. В общем случае ГР вырабатывает напряжение пилообразной формы (линейная непрерывная развертка). Это напряжение характеризуется длительностями прямого хода ТП, обратного хода ТОБР и блокировки и блокировки ТБЛ (рис.2.2) ТР = ТП + ТОБР + ТБЛ.
Рисунок
3.6.2
,
где Um – амплитуда напряжения развертки; t – текущее время.
В течение ТП луч будет описывать на экране такую же функциональную зависимость, какую имеет исследуемый сигнал во времени. В течение времени обратного хода и блокировки ГР формирует импульс, поступающий в канал управления яркостью и гасящий луч ЭЛТ на время ТО+ТБЛ.
Чтобы получить на экране ЭЛТ хотя бы один полный период исследуемого напряжения, период напряжения развертки ТР должен быть кратным периоду исследуемого напряжения ТС, т.е. должно выполняться условие синхронизации
ТР = nTC,
где n = 2, 3, … - целые числа.
На практике n > 3 брать нецелесообразно, т.к. ухудшается детальность наблюдения сигнала. Если условие синхронизации не выполняется (n – дробное число), то на экране ЭЛТ получается неустойчивое бегущее изображение.
Для соблюдения данного условия и непрерывного поддержания устойчивого изображения необходимо синхронизировать развертку с исследуемым напряжением. Сущность синхронизации состоит в том, что вместе с изменением периода исследуемых колебаний Т автоматически (синхронно) в осциллографе изменяется на такую же величину период развертки ТР. При этом начало периода развертки совпадает с началом периода сигнала.
Существенным недостатком непрерывной развертки является то, что она не обеспечивает наблюдение однократных импульсов малой длительности, а при исследовании процессов с большой скважностью этот режим неэффективен. Поэтому при исследовании указанных процессов используются другие виды разверток (задержанная, задерживающая, ждущая, однократная). Выбор вида развертки зависит от характера исследуемого сигнала.
Назначение усилителя горизонтального отклонения УГО аналогично УВО.
Канал управления яркостью луча Z используется при измерении временных параметров периодических процессов.
Калибраторы амплитуды и длительности являются встроенными в осциллограф источниками сигналов с точно известными параметрами. Благодаря им обеспечивается возможность измерений амплитудных и временных параметров исследуемых сигналов.
Для расширения функциональных возможностей осциллографа канал Y может дополняться электронным коммутатором, с помощью которого на экране однолучевой ЭЛТ можно наблюдать осциллограммы нескольких сигналов. В этом случае ЭО становится многоканальным. Структурная схема цепей двухканального ЭО изображена на рисунке 3.6.3.
Рисунок 3.6.3 – структурная схема двухканального осциллографа
Как видно на рисунка 3.6.3, с помощью электронного коммутатора (ЭК) осуществляется поочередная или одновременная подача сигналов с входов Y1 и Y2 на пластины Y ЭЛТ, чем и достигается эффект многоканальности.
При использовании осциллографа параметры сигналов определяются по их осциллограммам. Достоверность результатов измерений зависит от точности воспроизведения осциллограмм. Погрешности измерений зависят от правильного выбора осциллографа, установки оптимальных размеров осциллограммы, установки оптимальных размеров осциллограммы, выбора вида синхронизации и других факторов. При этом погрешность воспроизведения осциллограммы зависит от линейных (частотных) и нелинейных искажений сигналов.
С помощью ЭО можно измерять как постоянное напряжение, так и мгновенное, максимальное, минимальное значения и размеры сигнала.