
- •1. Роль курса «Материаловедение» в подготовке инженера
- •2. Роль отечественных и зарубежных ученых в развитии науки о металлах
- •3.Методы исследования структуры металлов и сплавов
- •4.Механические методы испытаний (статические, динамические, испытание на выносливость).
- •5.Атомно-кристаллическое строение металлов и сплавов
- •6.Дефекты кристаллического строения. Классификация. Влияние плотности несовершенств кристаллов на механические свойства
- •7.Кривые охлаждения. Первичная и вторичная кристаллизация сплавов.
- •8.Диаграммы состояний сплавов I и II типов
- •10.Диаграммы состояний сплавов III и IV типов
- •11.Правило отрезков, его применение для расчета фазового и структурного составов сплава
- •12.Закономерности н.С.Курнакова
- •13.Кривая охлаждения чистого железа. Диаграмма Fе-Fе3с. Основные данные о фазах и структурных составляющих.
- •17.Классификация и маркировка углеродистых сталей. Их применение.
- •18.Белые и ковкие чугуны. Условия их получения. Применение.
- •19.Серые, модифицированные, высокопрочные чугуны. Условия получения. Применение
- •20.Основные виды термической обработки. Положение их температурных интервалов на диаграмме Fе-FезС
- •21. Отжиг стали, разновидности, применение.
- •22.Нормализация стали, её режимы. Применение.
- •23.Диаграмма изотермических превращений переохлажденного аустенита эвтектоидной стали
- •24.Закалка её разновидности. Закаливаемость. Прокаливаемость.
- •25.Термообработка деталей после закалки: обработка холодом, отпуск.
- •26.Влияние легирующих элементов на структуру и свойства стали.
- •27.Классификация и маркировка легированных сталей. Их применение.
- •28.Конструкционные легированные стали. Применение. Особенности термообработки легированных сталей.
- •29.Инструментальные стали. Их классификация. Применение.
- •30.Твердые сплавы. Классификация. Применение.
- •31.Поверхностная закалка, её особенности.
- •32.Механические и термомеханические способы упрочнения.
- •33.Цементация деталей и их последующая термообработка.
- •34.Азотирование и нитроцементация. Режимы. Назначение.
- •35.Сплавы на основе алюминия. Классификация. Литейные алюминиевые сплавы
- •36.Деформируемые алюминиевые сплавы, упрочнение, обработка на возврат
- •37.Медь и сплавы на её основе. Классификация. Применение.
- •38.Антифрикционные сплавы на основе олова и цинка. Микроструктура. Применение.
27.Классификация и маркировка легированных сталей. Их применение.
Легированные сталиЭлементы, специально вводимые в сталь в определенных концентрациях с целью изменения ее строения и свойств, называются легирующими элементами, а стали – легированными.
Классификация легированных сталей
1. По структуре после охлаждения на воздухе выделяются три основных класса сталей:
перлитный;
мартенситный;
аустенитный
2. По степени легирования (по содержанию легирующих элементов):
низколегированные – 2,5…5 %;
среднелегированные – до 10 %;
высоколегированные – более 10%.
3. По числу легирующих элементов:
трехкомпонентные (железо, углерод, легирующий элемент);
четырехкомпонентные (железо, углерод, два легирующих элемента) и так далее.
4. По составу:
никелевые, хпомистые, хромоникелевые, хромоникельмолибденовые и так далее (признак– наличие тех или иных легирующих элементов).
5. По назначению:
конструкционные;
инструментальные (режущие, мерительные, штамповые);
Маркировка легированных сталей осуществляется следующим образом. Первые одна, две, три цифры в начале марки обозначает содержание углерода (18Х2Н2 МФА, 110Г13ЧТЛА, 9ХВГСА). В конструкционных сталях углерод находится в сотых долях процента, в инструментальных – десятых долях про- центов. Буквы правее цифр углерода обозначают легирующие элементы: А – азот, Б – ниобий, В – вольфрам, Г – марганец, Д – медь, Е – селен, К – кобальт, Н – никель, М – молибден, П – фосфор, Р- бор, С – кремний, Т – титан, Ф – ва- надий, Х – хром, Ц – цирконий, Ч – редкоземельные металлы, Ю – алюминий. Цифра стоящая после буквы указывает содержание элемента в процентах. Если цифры не стоит, то это говорит о том, что содержание соответствующего легирующего элемента составляет приблизительно 0,9 – 1,5 %. Если цифры не стоит после Mo, V, N, P3M, Ti, Ta, Nb, Zn, то это означает, что этого элемента содержится 0,2 – 0,5%; после перечисленных элементов в других случаях ставится цифра, в том числе «1». Высококачественные стали в конце марки обозначаются буквой «А» (т.е. содержание S, P, H, N, O – регламентировано). Особовысококачественные стали в конце обозначаются буквой «Ш», что говорит о выплавке стали электрошлаковым переплавом. Буква «А» в середине марки стали свидетельствует о легированности стали азотом. Если буква «А» стоит в начале марки, то это обозначает, что сталь «автоматная», с повышенным S и P, для лучшей обрабатываемости на автоматических станках.
28.Конструкционные легированные стали. Применение. Особенности термообработки легированных сталей.
Легированные конструкционные стали применяются для наиболее ответственных и тяжелонагруженных деталей машин. Практически всегда эти детали подвергаются окончательной термической обработке — закалке с последующим высоким отпуском в районе 550—680 °C (улучшение), что обеспечивает наиболее высокую конструктивную прочность. Содержание углерода (С) в легированных конструкционных сталях — в пределах 0.25-0.50 %Легирование существенно влияет на режимы термообработки.Нагрев легированных сталей необходимо осуществлять крайне медленно, поскольку пониженная теплопроводность этих сталей может вызывать образование трещин и коробление. Время выдержки увеличивают для выравнивания температуры по всему объему изделия.Охлаждение легированных сталей осуществляется также медленно. Ni, Cr, Mn, Mo и др. способствуют сокращению критической скорости закалки, а Co, Si, и Al - ее увеличению. Охлаждение производят в среде масел, если критическая скорость закалки снижена. Хромоникелемолибденовые стали являются воздушно-закаливаемыми.Легирующие элементы, кроме Co, увеличивают устойчивость и улучшают прокаливаемость. Наиболее активным элементом, влияющим на прокаливаемость, является Cr, затем Si, Mn и Ni. Mo эффективнее других элементов улучшает прокаливаемость. Введение 0,005% B дает наибольшую прокаливаемость, но дальнейшее увеличение его содержания ухудшает.Отпуск требует более продолжительной выдержки при более высоких температурах для эффективного завершения диффузии, поскольку легирование замедляет процессы превращения в стали.Химико-термическая обработка обеспечивает высокие механические свойства поверхности легированных сталей. Так, Ti ускоряет цементацию и позволяет при этом формировать температурные режимы; Cr, Mo и Al содействуют эффективному азотированию; Cr повышает также эффективность борирования