
- •Питання до іспиту
- •Множини. Основні поняття та означення.
- •Способи задання множин.
- •Скінченні та нескінченні множини. Зчисленні та незчисленні множини. Теорема Кантора
- •Круги Ейлера-Венна. Операції над множинами. Навести приклади.
- •Універсальна множина, порожня множина. Привести приклади універсуму і порожньої множини.
- •Порожня множина. Обґрунтуйте необхідність використання порожньої множини. Чи завжди будь-яка множина містить у собі порожню множину?
- •Дайте визначення підмножини. Чим відрізняється поняття включення ( або ) від поняття приналежності ( ).
- •Алгебра множин. Основні властивості операцій над множинами. Принцип двоїстості.
- •Метод доведення в алгебрі множин з застосуванням теореми о рівності множин (використання двостороннього включення).
- •Метод доведення в алгебрі множин з застосуванням основних властивостей операцій над множинами.
- •Декартовий добуток множин. Приклади.
- •Бінарні відношення на множинах. Основні поняття та означення.
- •Представлення відношення за допомогою матриці і графа. Приклади.
- •16. Функціональне бінарне відношення
- •17.Властивості бінарних відношень.
- •18.Відображення .Типи відображень.
- •19. Відно́шення еквівале́нтності .Класи еквівалентності.
- •20. Відношення порядку називається нестрогим, якщо воно рефлексивне
- •21.Елементарна комбінаторика.Правила суми та правило добутку.
- •22.Сполуки без повторень.
- •26.Графи.Основні поняття і означення.
- •Способи подання графа. Приклади.
- •Поняття логіки висловлень, операції над висловленнями. Таблиці істинності. Логічні формули.
- •Формули алгебри логіки.
- •Реалізація функцій формулами. Рівносильність формул
- •Основні тотожності алгебри логіки. Принцип двоїстості. Правила де Моргана для висловлень.
- •Булеві змінні. Булеві функції. Основні поняття. Способи задання булевих функцій.
- •Нормальні форми зображення булевих функцій.
- •44, 45. Досконалі диз’юнктивні нормальні форми (дднф), Досконалі кон’юнктиві нормальні форми (дкнф).
- •Методи мінімізації булевих функцій: карти та куб Карно, метод Квайн-Мак-Класкі, метод Борецького-Блейка.
- •Мінімізація булевих функцій. Логічні елементи. Логічні схеми
21.Елементарна комбінаторика.Правила суми та правило добутку.
В основі розв’язування багатьох комбінаторних задач лежать два основних правила – правило суми і правило добутку. У комбінаториці розглядається вибір і розміщення елементів деякої скінченної множини на основі якихось умов.
|
|
|
22.Сполуки без повторень.
Сполуками із
різних елементів по
називають множини складені із
різних елементів взятих із
,
які розрізняються хоча б одним елементом
(склад відіграє роль, а порядок ні):
.
23.
Сполуки з повтореннями: число різних
сполук із
різних елементів по
обчислюється за формулою:
24. Бином Ньютона. Это формула, представляющая выражение ( a + b ) n при положительном целом n в виде многочлена:
Заметим, что сумма показателей степеней для a и b постоянна и равна n.
П р и
м е р 1 .
Трикутник Паскаля.
Ряди трикутника Паскаля умовно пронумеровані згори, починаючи з нульового, й числа в нижньому ряді відносно чисел у попередньому ряді завжди розміщені ступінчасто й навскіс. Побудувати цей трикутник просто. Кожне число в кожному ряді одержуємо, додавши два числа, розміщені вгорі (зліва і справа). Якщо зліва або справа немає числа, підставляємо нуль на його місце. Наприклад, перше число в першому ряді 0 + 1 = 1, тоді як числа 1 і 3 в третьому ряді утворюють число 4 в четвертому ряді: 1 + 3 = 4.
Правило Паскаля стверджує: якщо
k-й біноміальний коефіцієнт в біноміальному ряді для (x + y)n, тоді
для будь-якого додатного цілого n і будь-якого цілого k між 0 і n
Ряди трикутника Паскаля умовно пронумеровані згори, починаючи з нульового, й числа в нижньому ряді відносно чисел у попередньому ряді завжди розміщені ступінчасто й навскіс. Побудувати цей трикутник просто. Кожне число в кожному ряді одержуємо, додавши два числа, розміщені вгорі (зліва і справа). Якщо зліва або справа немає числа, підставляємо нуль на його місце. Наприклад, перше число в першому ряді 0 + 1 = 1, тоді як числа 1 і 3 в третьому ряді утворюють число 4 в четвертому ряді: 1 + 3 = 4.
Правило Паскаля стверджує: якщо
k-й біноміальний коефіцієнт в біноміальному ряді для (x + y)n, тоді
для будь-якого додатного цілого n і будь-якого цілого k між 0 і n
25. JV-множиною Q називається множина, що містить N-елементів.
Нехай Аh А2, А„ - підмножини JV-множини Q . Позначи-
мо через А доповнення множини А{. А. = Q \ А і N(A) -
кількість елементів множини А. Має місце формула:
П
N(A\A2 ...An) = N-^ N{A\) + ^ N{AiAj) -
і=\ \<i<j<n
- ^N(AJA]Ak) + ... + (-V)"N(AlA2...An) (1.2.1).
\<i<j<k<n
n
Наслідок. Візьмемо у формулі Q = [j4 і врахуємо, що
z=l
N = iV(fi) = N([J 4 ) та 4 ' Л • • A ={JA=0- Отримаємо формулу:
N({JAI) = ^TN(AI)- '^jN(AiAj)+ ^ІУ(44-Л)~
z=l z=l \<i<j<n \<i<j<k<n
-... + (-l)n'lN(Al-A\-...■ An) (1.2.2).
Це формули включень та виключень, або формули решета.