Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ел-ка 1-30.doc
Скачиваний:
14
Добавлен:
18.09.2019
Размер:
1.21 Mб
Скачать

24. Разветвленные цепи переменного тока

 

Пусть мы имеем векторную диаграмму, изображенную на рис. 159. Проектируя вектор тока I на направление вектора напряжения U,   разложим  вектор тока на две составляющие.

Одна из составляющих совпадает по направлению с вектором напряжений и называется активной составляющей тока. Она обозначается буквой Iа и равна

Другая составляющая, перпендикулярная вектору напряжения, называется реактивной составляющей тока. Она обозначается буквой Iр и равна

 

 

Таким образом, переменный ток I можно рассматривать как геометрическую сумму двух составляющих: активной Iа и реактивпроизводить расчеты разветвленных цепей переменного тока.

Рассмотрим   разветвленную цепь, изображенную на рис.   160.

Токи в ветвях:

Углы сдвига фаз между напряжением и токами в ветвях

На рис. 160 справа построена векторная диаграмма для паобщим для двух ветвей. Ввиду наличия r и L в каждой из ветвей токи I1 и I2 отстают по фазе от напряжения U на углы 1 и 2.

Построив векторы токов I1, и I2 и сложив их по правилу параллелограмма, получим вектор тока I, протекающего на общем участке цепи. Из построения диаграммы видно, что

Общий ток равен

Порядок   расчета  разветвленной  цепи  покажем  на   числовом примере.

25. Краткое теоретическое описание.

Р ассмотрим электрическую схему на рис.1., в которой последовательно соединенные конденсатор, резистор и катушка индуктивности подключены к генератору переменного напряжения:

В этой цепи возникают вынужденные колебания силы тока и напряжения на отдельных её элементах. Амплитуда колебаний силы тока в цепи будет зависеть от частоты  приложенного постоянного напряжения генератора, так как сопротивления реактивных элементов – конденсатора и катушки индуктивности зависят от частоты.

При низкой частоте  переменного тока емкостное сопротивление конденсатора  будет очень большим, поэтому сила тока в цепи будет мала. В обратном предельном случае большой частоты  переменного тока большим будет индуктивное сопротивление катушки  , и сила тока в цепи опять будет мала.

Полное сопротивление Z цепи, изображенной на рис.1., определяется формулой:

.

Ясно, что максимальная сила тока в цепи будет соответствовать такой частоте  0 приложенного переменного напряжения, при которой индуктивное и ёмкостное сопротивления будут одинаковы:

 (1)

При равенстве реактивных сопротивлений катушки и конденсатора, амплитуды напряжений на этих элементах также будут одинаковыми UC = UL. Колебания напряжения на катушке и конденсаторе противоположны по фазе, поэтому их сумма при выполнении условия (1) будет равна нулю. В результате напряжение UR на активном сопротивлении R будет равно полному напряжению генератора U, а сила тока в цепи достигает максимального значения  . Циклическая частота  колебаний силы тока и Э.Д.С. при этом равна

 (2)

и совпадает с циклической частотой свободных незатухающих электромагнитных колебаний в электрическом контуре.

  Явление резкого возрастания амплитуды вынужденных колебаний силы тока в колебательном контуре при приближении циклической частоты внешней переменной Э.Д.С. к частоте  0 свободных незатухающих колебаний в контуре называется резонансом в электрической цепи переменного тока. Частота  =  0 называется резонансной циклической частотой. Резонансная циклическая частота не зависит от активного сопротивления R. График зависимости Im от  называется резонансной кривой. Резонансные кривые имеют тем более острый максимум, чем меньше активное сопротивление R:

26.

Резонанс токов. Резонанс токов может возникнуть при параллельном соединении индуктивности и емкости (рис. 198, а). В идеальном случае, когда в параллельных ветвях отсутствует активное сопротивление (R1=R2 = 0), условием резонанса токов является равенство реактивных сопротивлений ветвей, содержащих индуктивность и емкость, т. е. ?oL = 1/(?oC). Так как в рассматриваемом случае активная проводимость G = 0, ток в неразветвленной части цепи при резонансе I=U?(G2+(BL-BC)2)= 0. Значения токов в ветвях I1 и I2 будут равны (рис. 198,б), но токи будут сдвинуты по фазе на 180° (ток IL в индуктивности отстает по фазе от напряжения U на 90°, а ток в емкости I с опережает напряжение U на 90°). Следовательно, такой резонансный контур представляет собой для тока I бесконечно большое сопротивление и электрическая энергия в контур от источника не поступает. В то же время внутри контура протекают токи IL и Iс, т. е. имеет место процесс непрерывного обмена энергией внутри контура. Эта энергия переходит из индуктивности в емкость и обратно.

Как следует из формулы (74), изменяя значения емкости С или индуктивности L, можно изменять частоту колебаний ?0 электрической энергии и тока в контуре, т. е. осуществлять настройку контура на требуемую частоту. Если бы в ветвях, в которых включены индуктивность и емкость, не было активного сопротивления, этот процесс колебания энергии продолжался бы бесконечно долго, т. е. в контуре возникли бы незатухающие колебания энергии и токов IL и Iс. Однако реальные катушки индуктивности и конденсаторы всегда поглощают электрическую энергию (из-за наличия в катушках активного сопротивления проводов и возникновения

Рис. 197. Зависимость тока I и полного сопротивления Z от ? для последовательной (а) и параллельной (б) цепей переменного тока

в конденсаторах токов смещения, нагревающих диэлектрик), поэтому в реальный контур при резонансе токов поступает от источника некоторая электрическая энергия и по неразветвленной части цепи протекает некоторый ток I.

Условием резонанса в реальном резонансном контуре, содержащем активные сопротивления R1 и R2, будет равенство реактивных проводимостей BL = BC ветвей, в которые включены индуктивность и емкость.

Из рис. 198, в следует, что ток I в неразветвленной части цепи совпадает по фазе с напряжением U, так как реактивные токи 1L и Iс равны, но противоположны по фазе, вследствие чего их векторная сумма равна нулю.

Если в рассматриваемой параллельной цепи изменять частоту ?о источника переменного тока, то полное сопротивление цепи начинает увеличиваться, достигает наибольшего значения при резонансе, а затем уменьшается (см. рис. 197,б). В соответствии с этим ток I начинает уменьшаться, достигает наименьшего значения Imin = Ia при резонансе, а затем увеличивается.

В реальных колебательных контурах, содержащих активное сопротивление, каждое колебание тока сопровождается потерями энергии. В результате сообщенная контуру энергия довольно быстро расходуется и колебания тока постепенно затухают. Для получения незатухающих колебаний необходимо все время пополнять потери энергии в активном сопротивлении, т. е. такой контур должен быть подключен к источнику переменного тока соответствующей частоты ?0.

Явление резонанса. Электрическая цепь, содержащая индуктивность и емкость, может служить колебательным контуром, где возникает процесс колебаний электрической энергии, переходящей из индуктивности в емкость и обратно. В идеальном колебательном контуре эти колебания будут незатухающими. При подсоединении колебательного контура к источнику переменного тока угловая частота источника ? может оказаться равной угловой частоте ?0, с которой происходят колебания электрической энергии в контуре. В этом случае имеет место явление резонанса, т. е. совпадения частоты свободных колебаний ?0, возникающих в какой-либо физической системе, с частотой вынужденных колебаний ?, сообщаемых этой системе внешними силами.

Резонанс в электрической цепи можно получить тремя способами: изменяя угловую частоту ? источника переменного тока, индуктивность L или емкость С. Различают резонанс при последовательном соединении L и С — резонанс напряжений и при параллельном их соединении — резонанс токов. Угловая частота ?0, при которой наступает резонанс, называется резонансной, или собственной частотой колебаний резонансного контура.

Резонанс напряжений. При резонансе напряжений (рис. 196, а) индуктивное сопротивление XLравно емкостному Хс и полное сопротивление Z становится равным активному сопротивлению R:

Z = ?( R2 + [?0L - 1/(?0C)]2 ) = R

В этом случае напряжения на индуктивности UL и емкости Uc равны и находятся в противофазе (рис. 196,б), поэтому при сложении они компенсируют друг друга. Если активное сопротивление цепи R невелико, ток в цепи резко возрастает, так как реактивное сопротивление цепи X = XL—Xс становится равным нулю. При этом ток I совпадает по фазе с напряжением U и I=U/R. Резкое возрастание тока в цепи при резонансе напряжений вызывает такое же возрастание напряжений UL и Uc, причем их значения могут во много раз превышать напряжение U источника, питающего цепь.

Угловая частота ?0, при которой имеют место условия резонанса, определяется из равенства?oL = 1/(?0С).

Р ис. 196. Схема (а) и векторная диаграмма (б) электрической цепи, содержащей R, L и С, при резонансе напряжений

Отсюда имеем

?o = 1/?(LC) (74)

Если плавно изменять угловую частоту ? источника, то полное сопротивление Z сначала начинает уменьшаться, достигает наименьшего значения при резонансе напряжений (при ?o), а затем увеличивается (рис. 197, а). В соответствии с этим ток I в цепи сначала возрастает, достигает наибольшего значения при резонансе, а затем уменьшается.

27. Коэффициентом мощности, или «косинусом фи» (cos ), цепи называется отношение активной мощности к полной мощности. Коэффициент мощности -  .

В общем случае активная мощность меньше полной мощности, т. е. у этой дроби числитель меньше знаменателя, и поэтому коэффициент мощности меньше единицы. Только в случае чисто активной нагрузки, когда вся мощность является активной мощностью, числитель и знаменатель этой дроби равны между собой, и поэтому коэффициент мощности равен единице. Реактивная энергия потребляется нагрузкой и, если не принимать специальных мер, она будет загружать линию, идущую от генератора к нагрузке. Нельзя лишить реактивной энергии цепь, содержащую индуктивную нагрузку, но разгрузить генератор от реактивной мощности необходимо. Чем большую часть полной мощности составляет активная мощность, тем меньше числитель отличается от знаменателя дроби и тем ближе коэффициент мощности к единице. Задача состоит в том, чтобы заставить протекать по линии к потребителю только минимально необходимую величину реактивной энергии. Из треугольника мощностей (см. фиг. 171) получаем:

Cos  , или коэффициент мощности, измеряется особым прибором фазометром, устройство которого описано в четырнадцатой главе.  

28. Трехфазная цепь является частным случаем многофазных систем электрических цепей, представляющих собой совокупность электрических цепей, в которых действуют синусоидальные ЭДС одинаковой частоты, отличающиеся по фазе одна от другой и создаваемые общим источником энергии.

Каждую из частей многофазной системы, характеризующуюся одинаковым током, принято называть фазой. Таким образом, понятие "фаза" имеет в электротехнике два значения: первое – аргумент синусоидально изменяющейся величины, второе – часть многофазной системы электрических цепей. Цепи в зависимости от количества фаз называют двухфазными, трехфазными, шестифазными и т.п.

Трехфазные цепи – наиболее распространенные в современной электроэнергетике. Это объясняется рядом их преимуществ по сравнению как с однофазными, так и с другими многофазными цепями:

  • экономичность производства и передачи энергии по сравнению с однофазными цепями;

  • возможность сравнительно простого получения кругового вращающегося магнитного поля, необходимого для трехфазного асинхронного двигателя;

  • возможность получения в одной установке двух эксплуатационных напряжений – фазного и линейного.

Трехфазная цепь состоит из трех основных элементов: трехфазного генератора, в котором механическая энергия преобразуется в электрическую с трехфазной системой ЭДС; линии передачи со всем необходимым оборудованием; приемников (потребителей), которые могут быть как трехфазными (например, трехфазные асинхронные двигатели), так и однофазными (например, лампы накаливания).

29.     Если фазные обмотки генератора или потребителя соединить так, чтобы концы обмоток были соединены в одну общую точку, а начала обмоток присоединены к линейным проводам, то такое соединение называется соединением звездой и обозначается условным знаком Y. На рис. 1 обмотки генератора и потребителя соединены звездой. Точки, в которых соединены концы фазных обмоток генератора или потребителя, называются соответственно нулевыми точками генератора (0) и потребителя (0’). Обе точки 0 и 0’ соединены проводом, который называется нулевым, или нейтральным проводом. Остальные три провода трехфазной системы, идущие от генератора к потребителю, называются линейными проводами. Таким образом, генератор соединен с потребителем четырьмя проводами. Поэтому эта система называется четырехпроводной системой трехфазного тока.

Рис. 1. Соединение звездой

    Сравнивая несвязанную и четырехпроводную системы трехфазного тока, видим, что в первом случае роль обратного провода выполняют три провода системы, а во втором – один нулевой провод. По нулевому проводу протекает ток, равный геометрической сумме токов:

IA, IB и IC, т. е. Ī0= ĪA + ĪB + ĪC.       Напряжения, измеренные между началами фаз генератора (или потребителя) и нулевой точкой (или нулевым проводом), называются фазными напряжениями и обозначаются UA, UB и UC, или в общем виде Uф. Часто задаются величины э.д.с. фазных обмоток генератора. Они обозначаются ЕA, ЕB и ЕC, или Еф. Если пренебречь сопротивлениями обмоток генератора, то можно записать:  ЕA= UA, ЕВ= UВ, ЕC= UС.       Напряжения, измеренные между началами двух фаз: А и В, В и С, С и А – генератора или потребителя, называются линейными напряжениями и обозначаются UАВ, UВС, UСА, или в общем виде Uл. На рис. 1 стрелки показывают выбранное положительное направление тока, которое в линейных проводах принято от генератора к потребителю, а в нулевом проводе – от потребителя к генератору.       Если присоединить зажимы вольтметра к точкам А и В, то он покажет линейное напряжение UАВ. Так как положительные направления фазных напряжений UA, UB и UC выбраны от начал фазных обмоток к их концам, то вектор линейного напряжения UАВ будет равен геометрической разности векторов фазных напряжений UA и UB: ŪAВ=ŪA— ŪВ.      Аналогично можно записать:  ŪВС=ŪВ— ŪС;

ŪСА=ŪС— ŪА.     Иначе можно сказать, что мгновенное значение линейного напряжения равно разности мгновенных значений соответствующих фазных напряжений. На рис. 2 вычитание векторов заменено сложением векторов:  UA и — UB; UВ и — UС; UС и — UА.     Из векторной диаграммы видно, что векторы линейных напряжений составляют замкнутый треугольник.

Рис. 2. Фазные и линейные напряжения при соединении звездой

Зависимость между линейным и фазным напряжениями:  UBС=2UBcos30o, так как cos30o=√3/2, то UBС=√3UB, или в общем виде Uл=√3Uф.     Следовательно, при соединении звездой линейное напряжение в √3 раз больше фазного напряжения.      Ток, протекающий по фазной обмотке генератора или потребителя, называется фазным током и обозначается в общем виде Iф. Ток, протекающий по линейному проводу, называется линейным током и обозначается в общем виде Iл. На рис. 1 видно, что при соединении звездой линейный ток равен фазному току, т. е.  Iл=Iф.      Рассмотрим случай, когда нагрузка в фазах потребителя одинакова как по величине, так и по характеру. Такая нагрузка называется равномерной, или симметричной. Это условие выражается равенством. z1= z2= z3.      Нагрузка не будет равномерной, если, например, z1= r1=0,5ом; z2=ωL2=0,5ом и z3=1/ωC3=0,5ом, так как здесь выполнено лишь одно условие – равенство сопротивлений фаз потребителя по величине, в то время как характер сопротивлений различен (r1 - активное сопротивление, ωL2 - индуктивное сопротивление, 1/ωC3 - емкостное сопротивление).       При симметричной нагрузке: IА=UА/zА; IВ=UВ/zВ; IС=UС/zС; IА=IВ=IС.    Фазные коэффициенты мощности вследствие равенства сопротивлений и одинаковости их характера будут одинаковы:  cosφ1=rА/zА; cosφ2=rB/zB; cosφ3=rC/zC; cosφ1=cosφ2=cosφ3.     В нулевом проводе должна протекать геометрическая сумма токов всех трех фаз. Если посмотреть на кривые изменения токов при симметричной нагрузке трехфазной системы, то увидим, что максимальные значения для всех трех синусоид тока одинаковы. Поскольку при симметричной нагрузке сумма мгновенных значений токов трехфазной системы равна нулю, следовательно, ток в нулевом проводе будет равен нулю.          При симметричной нагрузке фазные напряжения отдельных фаз равны между собой. При несимметричной нагрузке трехфазной системы симметрия токов и напряжений нарушается. Однако в четырехпроводных цепях часто пренебрегают незначительной несимметрией фазных напряжений. В этих случаях между линейными и фазными напряжениями существует зависимость:

  Uл=√3Uф.

Симметричная нагрузка.   Сопротивления фаз нагрузки   одинаковы и равны некоторому активному сопротивлению ZA = ZB = ZC = R.         Узловое напряжение

,

потому что трехфазная система ЭДС симметрична,      .

        Напряжения фаз нагрузки и генератора одинаковы:

     Фазные токи  одинаковы по  величине и совпадают по фазе со своими фазными напряжениями. Ток в нейтральном проводе отсутствует

       В трехфазной системе, соединенной звездой, при симметричной нагрузке нейтральный провод не нужен.

30. Если фазные обмотки генератора или потребителя соединить так, чтобы концы обмоток были соединены в одну общую точку, а начала обмоток присоединены к линейным проводам, то такое соединение называется соединением звездой и обозначается условным знаком Y. На рис. 1 обмотки генератора и потребителя соединены звездой. Точки, в которых соединены концы фазных обмоток генератора или потребителя, называются соответственно нулевыми точками генератора (0) и потребителя (0’). Обе точки 0 и 0’ соединены проводом, который называется нулевым, или нейтральным проводом. Остальные три провода трехфазной системы, идущие от генератора к потребителю, называются линейными проводами. Таким образом, генератор соединен с потребителем четырьмя проводами. Поэтому эта система называется четырехпроводной системой трехфазного тока.

Рис. 1. Соединение звездой

    Сравнивая несвязанную и четырехпроводную системы трехфазного тока, видим, что в первом случае роль обратного провода выполняют три провода системы, а во втором – один нулевой провод. По нулевому проводу протекает ток, равный геометрической сумме токов:

IA, IB и IC, т. е. Ī0= ĪA + ĪB + ĪC.       Напряжения, измеренные между началами фаз генератора (или потребителя) и нулевой точкой (или нулевым проводом), называются фазными напряжениями и обозначаются UA, UB и UC, или в общем виде Uф. Часто задаются величины э.д.с. фазных обмоток генератора. Они обозначаются ЕA, ЕB и ЕC, или Еф. Если пренебречь сопротивлениями обмоток генератора, то можно записать:  ЕA= UA, ЕВ= UВ, ЕC= UС.       Напряжения, измеренные между началами двух фаз: А и В, В и С, С и А – генератора или потребителя, называются линейными напряжениями и обозначаются UАВ, UВС, UСА, или в общем виде Uл. На рис. 1 стрелки показывают выбранное положительное направление тока, которое в линейных проводах принято от генератора к потребителю, а в нулевом проводе – от потребителя к генератору.       Если присоединить зажимы вольтметра к точкам А и В, то он покажет линейное напряжение UАВ. Так как положительные направления фазных напряжений UA, UB и UC выбраны от начал фазных обмоток к их концам, то вектор линейного напряжения UАВ будет равен геометрической разности векторов фазных напряжений UA и UB: ŪAВ=ŪA— ŪВ.      Аналогично можно записать:  ŪВС=ŪВ— ŪС;

ŪСА=ŪС— ŪА.     Иначе можно сказать, что мгновенное значение линейного напряжения равно разности мгновенных значений соответствующих фазных напряжений. На рис. 2 вычитание векторов заменено сложением векторов:  UA и — UB; UВ и — UС; UС и — UА.     Из векторной диаграммы видно, что векторы линейных напряжений составляют замкнутый треугольник.

Рис. 2. Фазные и линейные напряжения при соединении звездой

Зависимость между линейным и фазным напряжениями:  UBС=2UBcos30o, так как cos30o=√3/2, то UBС=√3UB, или в общем виде Uл=√3Uф.     Следовательно, при соединении звездой линейное напряжение в √3 раз больше фазного напряжения.      Ток, протекающий по фазной обмотке генератора или потребителя, называется фазным током и обозначается в общем виде Iф. Ток, протекающий по линейному проводу, называется линейным током и обозначается в общем виде Iл. На рис. 1 видно, что при соединении звездой линейный ток равен фазному току, т. е.  Iл=Iф.      Рассмотрим случай, когда нагрузка в фазах потребителя одинакова как по величине, так и по характеру. Такая нагрузка называется равномерной, или симметричной. Это условие выражается равенством. z1= z2= z3.      Нагрузка не будет равномерной, если, например, z1= r1=0,5ом; z2=ωL2=0,5ом и z3=1/ωC3=0,5ом, так как здесь выполнено лишь одно условие – равенство сопротивлений фаз потребителя по величине, в то время как характер сопротивлений различен (r1 - активное сопротивление, ωL2 - индуктивное сопротивление, 1/ωC3 - емкостное сопротивление).       При симметричной нагрузке: IА=UА/zА; IВ=UВ/zВ; IС=UС/zС; IА=IВ=IС.    Фазные коэффициенты мощности вследствие равенства сопротивлений и одинаковости их характера будут одинаковы:  cosφ1=rА/zА; cosφ2=rB/zB; cosφ3=rC/zC; cosφ1=cosφ2=cosφ3.     В нулевом проводе должна протекать геометрическая сумма токов всех трех фаз. Если посмотреть на кривые изменения токов при симметричной нагрузке трехфазной системы, то увидим, что максимальные значения для всех трех синусоид тока одинаковы. Поскольку при симметричной нагрузке сумма мгновенных значений токов трехфазной системы равна нулю, следовательно, ток в нулевом проводе будет равен нулю.     Отбрасывая нулевой провод в четырехпроводной системе, переходим к трехпроводной системе трехфазного тока. Если имеется симметричная нагрузка, как, например, трехфазные двигатели переменного тока, трехфазного тока, трехфазные печи, трехфазные трансформаторы и т. п., то к такой нагрузке подводятся только три провода. Потребители, включенные звездой с несимметричной нагрузкой фаз, нуждаются в нулевом проводе.      При симметричной нагрузке фазные напряжения отдельных фаз равны между собой. При несимметричной нагрузке трехфазной системы симметрия токов и напряжений нарушается. Однако в четырехпроводных цепях часто пренебрегают незначительной несимметрией фазных напряжений. В этих случаях между линейными и фазными напряжениями существует зависимость:

  Uл=√3Uф.

Нагрузка несимметричная,   RA< RB = RC, но сопротивление нейтрального провода равно нулю:  ZN = 0. Напряжение смещения нейтрали

рис. 7.6

       Фазные напряжения нагрузки и генератора одинаковы

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]