Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
конспект2.doc
Скачиваний:
6
Добавлен:
18.09.2019
Размер:
122.37 Кб
Скачать

51. 52. Термометрия

При термическом (или геотермическом) каротаже вдоль ствола скважины непрерывно регистрируется температура среды. Для термических исследований чаще всего применяют электрические термометры (или термометры сопротивлений) разных марок и регистрирующее устройство каротажной станции.

На температуры в скважинах искажающее влияние могут оказывать разные причины: изменение диаметра скважины, потоки воздуха или буровой жидкости, нагрев породы после бурения и др. Эти факторы необходимо учитывать или исключать при выявлении температурных аномалий.

Термический каротаж подразделяется на методы естественных (МЕТ) и искусственных (МИТ) тепловых полей. Кривая изменения естественных температур пород в скважине и рассчитанный по ней геотермический градиент каждого i-го пласта зависят от теплового потока и теплопроводности слагающих пород . В случае горизонтального залегания пород тепловой поток по стволу скважины остается практически постоянным, и по графику геотермического градиента легко выделить породы с разной теплопроводностью.

В разведочных скважинах термометрия относится к дополнительным методам и проводится при значительных вариациях геотермического градиента по территории месторождения, например, из-за блокового строения разреза.

Диаграмма геотермического градиента регистрируется в масштабе 0,25оС/см с соотношением последующих масштабов как 1:2.

Измерения проводятся сверху-вниз и запись повторяется при подъеме электротермометра снизу-вверх.

Измерения истинной температуры промывочной жидкости при неустановившемся тепловом режиме дают информацию о температурном состоянии ствола скважины в процессе проведения ГИС и проводятся по совместному решению геологических и геофизических служб.

56. Люминесцентно-битуминологический метод и метод избирательных электродов

Люминесцентно-битуминологический метод исследования скважин. В наиболее перспективных на нефть и газ интервалах разреза одновременно с газометрическими исследованиями скважин эпизодически проводят люминесцентно-битуминологи-ческий анализ промывочной жидкости, шлама и керна с целью выявления нефтеносных пород.

Люминесцентно-битуминологический метод исследования скважин основан на способности нефтей и битумов люминесци-ровать (светиться) под воздействием ультрафиолетовых лучей. Цвет люминесценции битума определяется главным образом со­держанием масляного и смоляного компонентов, люминесци-рующих соответственно голубоватым и желто-бурым цветами. Легкие нефти люминесцируют синевато-серым и бледно-жел­тым, нефть среднего удельного веса — темно-желтым и желто­вато-коричневым, тяжелые (окислившиеся) нефти — буровато-коричневыми цветами.

Люминесцентно-битуминологический метод обладает высо­кой чувствительностью. Он позволяет выявлять в промывочной жидкости малые количества нефти (0,01—0,005 %). Для повы­шения чувствительности и получения более надежных данных пробу промывочной жидкости, предназначенную для люминес­центного анализа, разбавляют водой или добавляют в нее ка­кой-либо растворитель (чаще всего хлороформ). Из проб шлама растворителем делают вытяжку, которую и подвергают люминесцентно-битуминологическому анализу. Яркость свече­ния сначала интенсивно возрастает пропорционально содер­жанию битумов в породе, затем становится менее интенсив­ной, а при содержании битумов более 0,1 % уменьшается (рис. 136).

Таким образом, по данным люминесцентно-битуминологиче-ского анализа можно определить качественное и в какой-то сте­пени количественное содержание битумов в промывочной жид­кости, шламе, керне, а следовательно, получить представление о нефтеносности пробуренных пород.

Люминесцентно-битуминологический анализ проводят с по­мощью люминоскопа, входящего в комплект газометрических станций.

10. Акустический каротаж (АК).

Акустический каротаж (регистрация кинематических и динамических параметров продольных и поперечных волн и их относительных параметров) относится к основным методам, проводится в открытом стволе во всех поисковых скважинах, перед спуском каждой технической или эксплуатационной колонны, по всему разрезу, исключая кондуктор.

При наличии в разрезе газонасыщенных пластов акустический каротаж рекомендуется проводить в интервалах каждого стандартного каротажа, т.е. в условиях, когда зоны проникновения еще не достигают критических для АК значений.

Метод АК обеспечивает высокое вертикальное расчленение разреза (выделяются контрастные по кинематическим и по динамическим параметрам прослои 0,4-0,6м).

На показания АК практически не влияют диаметр скважины, наличие и свойства глинистой корки, тип и характеристики промывочной жидкости, свойства вмещающих пород, температура в интервалах замеров, что переводит АК в разряд эффективных методов с минимальным числом поправок при определении пористости.

Физические основы метода.

Акустический каротаж основан на возбуждении в жидкости, заполняющей скважину, импульса упругих колебаний и регистрации волн, прошедших через горные породы, на заданном расстоянии от излучателя в одной или нескольких точках на оси скважины. Возбуждение и регистрация упругих волн при АК осуществляется с помощью электроакустических преобразователей.

При воздействии на элементарный объем породы с помощью ультразвуковой волны (10-75 кГц) происходит деформация частиц породы и их перемещение. Во всех направлениях от точки приложения возбуждающей силы изменяется первоначальное состояние среды.

Процесс последовательного распространения деформации называется упругой волной. Различают продольные и поперечные волны. Продольные волны связаны с деформациями объема твердой или жидкой среды, а поперечные с деформациями только твердой среды.

Продольная волна представляет собой перемещение зон сжатия и растяжения вдоль луча, а поперечная - перемещение зон скольжения слоев относительно друг друга в направлении перпендикулярном лучу. Продольные волны распространяются в 1,5 -10 раз быстрее поперечных.

Упругие свойства горных пород, а значит и скорости распространения упругих волн в них обусловлены их минеральным составом, пористостью и формой порового пространства и, таким образом, тесно связаны с литологическими и петрофизическими свойствами.

Скорость распространения упругих волн в различных средах следующая:

  • воздух - 300-500 м/с,

  • метан - 430 м/с,

  • нефть - 1300 м/с,

  • вода пресная - 1470 м/с,

  • вода минерализованная - 1600 м/с,

  • глина - 1200-2500 м/с,

  • песчаник плотный - 3000-6000 м/с,

  • цемент - 3500 м/с,

  • сталь - 5400 м/с.

Акустический метод применяется для расчленения разрезов скважин по плотности, пористости, коллекторным свойствам, а также для выявления границ газ - нефть, нефть - вода и определения состава насыщающего породы флюида. Кроме того, по данным этого метода можно судить о техническом состоянии скважин и, в частности, о качестве цементации обсадных колонн.