
- •1. Предмет комбінаторики. Правила суми і добутку. Перестановки без повторення . Перестановки з повтореннями.
- •2.Розміщення без повторення. Розміщення з повтореннями.
- •5. Трикутник Паскаля, біном Ньютона. Число всіх підмножин множини.
- •6.Комбінації з повтореннями.
- •7. Формули включень та виключень; вміти записати для 2 і 3.
- •8.Простір елементарних подій. Операції над подіями. Класичне означення ймовірності. Статистичне означення ймовірності.
- •9.Теорема додавання ймовірностей для несумісних подій. Теорема додавання ймовірностей для сумісних подій.
- •10.Залежні та незалежні події, умовна ймовірність.
- •11.Теорема множення для двох випадкових подій. Теорема множення для довільних випадкових подій.
- •12.Попарно залежні та незалежні у сукупності події. Приклад Бернштейна.
- •13.Геометричні ймовірності. Задача про зустріч. Задача Бюффона.
- •14. Ймовірність появи хоча б однієї випадкової події. Задача про товсту монету.
- •15.Формула повної ймовірності. Формула Бейеса.
- •1.Формула повної ймовірності
- •16. Формула Бернулі. Найймовірніше число “успіхів” у схемі Бернулі.
- •17.Теорема Пуассона
- •18. Локальна теорема Муавра-Лапласа. Функція Гаусса.
- •19. Інтегральна теорема Муавра-Лапласа. Функція Лапласа.
- •20.Поняття випадкової величини. Функція розподілу. Приклади. Властивості функцій розподілу.
- •21.Закон розподілу дискретної випадкової величини. Математичне сподівання двв та його властивості.
- •Дисперсія двв та його властивості. Середнє квадратичне відхилення.
- •Математичне сподівання та дисперсія біномного розподілу двв.
- •24.Диференціальна функція розподілу неперервної випадкової величини, її властивості та ймовірносний смисл.
- •25. Відшукання інтегральної функції неперервної випадкової величини за відомою диференціальною функцією. Доведення рівності та її геометричний зміст.
- •26.Числові характеристики неперервної випадкової величини.
- •27. Нормальний закон розподілу, його параметри та графік. Зв’язок між функцією розподілу нормального закону та функцією Лапласа.
- •28.Ймовірність попадання нормально розподіленої величини в заданий інтервал.
- •29. Правило трьох сигм.
- •30. Поняття про закон великих чисел. Нерівності Чебишева.
- •31.Мода та медіана, квантилі.
- •32.Рівномірний розподіл та його числові характеристики.
- •Показниковий розподіл та його числові характеристики.
- •34. Закон розподілу Пуассона
- •35.Геометричний розподіл та його числові характеристики.
- •36. Початкові та центральні моменти. Асиметрія та ексцес.
- •37.Приклади: асиметрія показникового розподілу; асиметрія розподілу Пуассона.
- •Розподіл Пуассона
- •38.Теорема Чебишова.
- •39.Теорема Бернуллі
- •40. Центральна гранична теорема.
- •Классическая формулировка ц.П.Т.
- •41. Випадковий процес та його характеристики.
- •42.**Ланцюгі Маркова
- •Формальне визначення Послідовність дискретних випадкових величин називається ланцюгом Маркова (з дискретним часом), якщо
- •43.**Марківський випадковий процес. Потоки подій.
- •**Пуассонівський випадковий процес.
- •45. Поняття про генеральну сукупність та вибірку. Емпірична формула розподілу.
- •46. Вибіркові характеристики. Варіаційний ряд, таблиці частот, гістограма.
- •47.Полігон частот. Статистичне та інтервальне оцінювання параметрів розподілу.
- •48. Вибіркове середнє, вибіркова дисперсія. Інтервальні оцінки параметрів розподілу.
- •49.Надійні межі для математичного сподівання у випадку нормального розподілу.
- •50.Статистична гіпотеза та загальна схема її перевірки. Критерій Пірсона.
8.Простір елементарних подій. Операції над подіями. Класичне означення ймовірності. Статистичне означення ймовірності.
Простір елементарних подій — множина всіх можливих наслідків стохастичного експерименту. Тобто, множина елементарних подій. Зазвичай позначаєтеся літерою Ω, також S або U.
Простір елементарних подій називається дискретним, якщо множина Ω скінченна або зліченна.
Приклад
Припустимо, що монету підкидають один раз. Простір елементарних подій, цього експерименту має вигляд Ω = {Г, Р}, де Г означає появу герба, буква Р — появу решки. Монету підкидають двічі. Простором елементарних подій цього експерименту є множина Ω = {ГГ, ГР, РГ, РР}. Тут ГР означає, наприклад, що при першому підкиданні з'явився герб, а при другому — решка.
Підкидають шестигранний гральний кубик на якому вибиті очки від 1 до 6. Нас цікавить число очок, яке випало. Простором елементарних подій тут може бути Ω = {1,2,3,4,5,6}.
Операції над подіями.
Класичне означення ймовірності: Імовірністю випадкової події А називається відношення кількості елементарних подій m, які сприяють появі цієї події (становлять множину її елементарних подій), до загальної кількості n рівноможливих елементарних подій, що утворюють простір елементарних подій W:
P(A)=m/n;
Щоб обчислити ймовірність події А за цією формулою, потрібно знайти кількість елементарних подій у просторі W, а також кількість їх у множині, яка відповідає події А. Для цього застосовують формули комбінаторики.
Статистичне означення ймовірності: Статистичною ймовірністю події А називається відношення кількості m випробувань, в яких подія А відбулась, до загальної кількості виконаних випробувань n: W(A)=m/n;
9.Теорема додавання ймовірностей для несумісних подій. Теорема додавання ймовірностей для сумісних подій.
Суммой А + В двух событий А и В называют событие, состоящее в появлении события А, или события В, или обоих этих событий. Например, если из орудия произведены два выстрела и А — попадание при первом выстреле, В — попадание при втором выстреле, то А + В — попадание при первом выстреле, или при втором, или в обоих выстрелах
Суммой нескольких событий называют событие, которое состоит в появлении хотя бы одного из этих событий.
Теорема. Вероятность появления одного из двух несовместных событий, безразлично какого, равна сумме вероятностей этих событий:
Р (А + В) = Р (А) + Р (В).
С л е д с т в и е. Вероятность появления одного из нескольких попарно несовместных событий, безразлично какого, равна сумме вероятностей этих событий: Р (A1 + A2 + ... + An) = Р (A1) + Р (A2) + ... + Р (An).
Теорема сложения вероятностей совместных событий. Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления:
Р (А + В) = Р (А) + Р (В) - Р (АВ).
Теорема может быть обобщена на любое конечное число совместных событий. Например, для трех совместных событий Р(А + В+С) = Р(А) + Р(В) + + Р(С) - Р(АВ) - Р(АС) - Р(ВС) + Р(АВС).