- •Содержание
- •Кинематика поступательного и вращательного движения.
- •Динамика поступательного движения
- •Динамика вращательного движения.
- •Работа. Энергия.
- •Законы сохранения в механике.
- •Элементы специальной теории относительности.
- •Длина предмета:
- •Площадь:
- •Средняя энергия молекул.
- •Распределения Максвелла и Больцмана.
- •Первое начало термодинамики. Работа при изопроцессах.
- •Второе начало термодинамики. Энтропия.
- •Электростатическое поле в вакууме.
- •Явление электромагнитной индукции.
- •Энергия магнитного поля
- •Уравнения Максвелла.
- •Электрические и магнитные свойства вещества.
- •1. Диамагнетики
- •Законы постоянного тока.
- •Магнитостатика.
- •Д ля положительной частицы д ля отрицательной частицы Свободные и вынужденные колебания.
- •Сложение гармонических колебаний.
- •Волны. Уравнение волны.
- •Энергия волны. Перенос энергии волной.
- •Интерференция и дифракция света.
- •Поляризация и дисперсия света.
- •Закон Малюса
- •2. Закон Брюстера
- •3 . Если угол падения равен углу Брюстера, угол между отраженным преломленным лучом равен 900.
- •Тепловое излучение. Фотоэффект.
- •Эффект Комптона. Световое давление.
- •Уравнение Шредингера (общие свойства).
- •Уравнение Шредингера (конкретные ситуации).
- •Дуализм свойств частиц. Соотношение неопределенностей Гейзенберга.
- •Спектр атома водорода. Правила отбора.
- •Фундаментальные взаимодействия.
- •Ядро. Элементарные частицы.
- •Ядерные реакции.
- •Законы сохранения в ядерных реакциях.
Динамика поступательного движения
1. Импульс материальной
точки массой m, движущейся со скоростью
.
2. Второй закон Ньютона
.
3. Второй закон Ньютона в импульсной форме
,
.
где
- результирующая всех сил, действующих
на тело,
- импульс силы, dt
- время действия силы.
Динамика вращательного движения.
1. Момент инерции материальной точки
,
где m – масса м.т., r – расстояние от материальной точки до оси вращения.
2. Моменты инерции тел относительно неподвижной оси
Тело |
Ось вращения проходит |
Момент инерции |
Однородный тонкий стержень
длиной
|
Через центр тяжести перпендикулярно длине |
|
Через конец перпендикулярно длине |
|
|
Сплошной цилиндр (радиус r, высота h) |
Через ось цилиндра |
|
Через центр тяжести перпендикулярно оси цилиндра |
|
|
Сплошной шар радиусом r |
По диаметру |
|
По касательной |
|
|
Обруч (кольцо) массой m, радиусом r. |
Через ось обруча |
|
3. Момент импульса материальной точки массой m, вращающейся вокруг неподвижной оси, направлен по оси вращения. Сонапроавлен с угловой скоростью.
.
- угловая скорость.
4. Основной закон динамики вращательного движения (через момент импульса)
,
или
.
где
- момент силы, действующей на тело,
- импульс момента силы.
5. Основной закон динамики вращательного движения (традиционная форма)
.
Вектор момента силы всегда сонаправлен с угловым ускорением.
Работа. Энергия.
1. Работа, совершаемая внешними силами при поступательном движении
.
где
- радиус-вектор начального положения
тела,
- конечного.
2. Работа, совершаемая внешними силами при вращательном движении
.
где
- угловое перемещение в начальном
положении тела,
- конечном.
3. Кинетическая энергия тела, движущегося поступательно
или
.
4. Кинетическая энергия, вращающегося тела
или
.
5. Кинетическая энергия, катящегося со скоростью тела
.
6. Потенциальная энергия:
а) упругодеформированной пружины
,
где k - жесткость пружины, x - абсолютная деформация;
б) тела, находящегося в однородном поле силы тяжести
,
где g - ускорение
свободного падения, h - высота, на
которую поднято тело над нулевым уровнем
(например, над уровнем моря). Формула
справедлива при высотах
,
где R - радиус Земли;
в) гравитационного взаимодействия:
,
где G
- гравитационная постоянная,
и
- массы взаимодействующих тел, r -
расстояние между центрами масс
взаимодействующих тел.
7. Связь консервативной силы и потенциальной энергии
8. Градиент функции
9. Связь механической работы любой силы и изменением кинетической энергии
.
10. Связь механической работы, совершаемой консервативными силами и изменением потенциальной энергии
.
11. Связь механической работы, совершаемой неконсервативными силами и изменением полной механической энергии
.
12. Спутник на орбите обладает кинетической ЕК и потенциальной ЕП энергиями. Их отношение равно
.
