Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы теории информации.doc
Скачиваний:
16
Добавлен:
17.09.2019
Размер:
446.98 Кб
Скачать

20. Стандартные алгоритмы. Действия с целыми числами. Суммирование и умножение. Вычисление многочлена по схеме Горнера.

У каждого исполнителя есть конечный набор элементарных команд (действий), оперирующих элементарными объектами, которых также конечное число.

Входом алгоритма является конечный набор элементарных объектов. Во время работы алгоритма выполняется конечное число элементарных действий и результат алгоритма также является конечным набором элементарных объектов.

В компьютерах элементарным объектом является бит. Есть несколько стандартных способов записи чисел (действительных, целых, и целых неотрицательных) в виде последовательности бит фиксированной длины.

Целые типы. В языке Турбо Паскаль определено 5 целых типов: Shortint (-128 ... 127, 1 байт), Integer (-32767 ... 32768, 2 байта), Longint (-2147483648 ... 2147483647, 4 байта), Byte (0 ... 255, 1 байт), Word (0 ... 65535, 2 байта). Для целых чисел определены такие операции. Унарные: +,-. Бинарные: сложение, вычитание, умножение, получение частного (div) и остатка (mod) при целочисленном делении и некоторые другие. Также с целыми числами можно производить операции, результаты которых не целые числа. Это обычное деление и операции отношения. Кроме того, имеется большое количество встроенных функций для работы с целыми числами: abs, sqr, sqrt, sin, cos, exp, ln и др.

Схе́ма Го́рнера (метод Горнера) — алгоритм вычисления значения многочлена, записанного в виде суммы мономов (одночленов), при заданном значении переменной. Метод Горнера позволяет найти корни многочлена[1], а также вычислить производные полинома в заданной точке. Схема Горнера также является простым алгоритмом для деления многочлена на бином вида .

p(x) = (( ... ((anx + an-1)x + an-2)x + ... + a2)x + a1)x + a0.

21. Булева алгебра. Переменная логического типа. Операции с логической переменной.

БУЛЕВА АЛГЕБРА, область математики, содержащая правила обращения с множествами, а также с логическими утверждениями типа «и», «или». Например, в Булевой алгебре выражение ху означает «х и у», а х+у - это «х или у». Данный принцип широко применяется при создании компьютеров, где ДВОИЧНАЯ СИСТЕМА (0 и 1) соответствует логическим утверждениям, на основе которых функционирует компьютер. Название этой отрасли алгебры дано по имени Джорджа Буля.

К этому типу данных применимы следующие операции:

И (логическое умножение) (AND, &, *),

ИЛИ (логическое сложение) (OR, |, +),

исключающее ИЛИ (умножение с переносом) (xor, NEQV, ^),

эквивалентность (равенство) (EQV, =, ==)

инверсия (NOT, ~, !)

сравнение (>, <, <=, >=)

Так же могут использоваться и другие операции булевой алгебры. Большинство языков программирования позволяют использовать булев тип и в арифметических операциях, приводя его к численному типу согласно принятым в языке правилам приведения типов.