- •1. Предмет физической химии и ее значение. Основные разделы. Роль выдающихся ученых в развитии физической химии. Прикладное значение физической и коллоидной химии
- •Разделы:
- •Роль выдающихся ученых в развитии физической химии
- •Прикладное значение физической и коллоидной химии
- •2. Агрегатные состояния вещества, их различия с точки зрения кинетической энергии частиц. Плазменное состояние вещества
- •3. Газообразное состояние вещества. Модель идеального газа. Газовые законы. Уравнение Клапейрона - Менделеева. Универсальная газовая постоянная, её физический смысл.
- •4. Газовые законы. Их графическое выражение.
- •5. Реальные газы. Причины отклонения в поведении реальных газов от законов идеальных газов. Уравнение состояния реального газа Ван-дер-Ваальса. Изотерма реального газа.
- •6. Критическое состояние и критические параметры вещества. Газовые смеси. Состав смеси по массовым, объемным и молярным долям. Парциальное давление. Закон Дальтона.
- •8. Твердое состояние вещества. Кристаллическое и аморфное состояние. Основные типы кристаллических решеток
- •9. Предмет термодинамики и его значение для изучения химических процессов. Основные термодинамические понятия: система, процесс, функция состояния.
- •10. Первое начало термодинамики и его математическое выражение. Значение первого начала термодинамики. Термохимия.
- •11. Теплоемкость веществ. Молярная, удельная и объемная теплоемкость. Зависимость теплоемкости от температуры и давления. Связь между различными видами теплоемкости.
- •12. Работа расширения газа при изобарическом, изохорическом, изотермическом и адиабатическом процессах.
- •13. Тепловые эффекты химических превращений. Факторы, влияющие на тепловой эффект. Закон Кирхгофа. Связь между тепловыми эффектами при постоянном давлении и постоянном объеме.
- •Следствия из закона Гесса
- •Стандартная энтальпия образования
- •15. Второе начало термодинамики. Его значение и формулировки. Математическое выражение. Энтропия как характеристическая функция состояния системы.
- •Формулировки
- •16. Энергия Гиббса. Направление химических процессов. Расчет изменения энергии Гиббса по справочным данным.
- •17. Обратимые и необратимые реакции. Состояние химического равновесия. Различные способы выражения констант равновесия. Связь между ними.
- •18. Обратимые и необратимые реакции. Состояние химического равновесия. Связь между Кр и Кс. Максимальная работа обратимого процесса.
- •19. Факторы, влияющие на положение равновесия. Связь константы равновесия с энергией Гиббса. Принцип Ле Шателье, его практическое применение.
- •37. Электрохимическая коррозия металлов. Способы защиты от нее.
- •38. Основные понятия химической кинетики.
- •56. Состав, получение, классификация полимеров. Механические свойства полимеров. Взаимодействие полимеров с растворителями.
- •57. Растворы высокомолекулярных соединений. Их классификация. Свойства разбавленных растворов. Применение полимеров.
17. Обратимые и необратимые реакции. Состояние химического равновесия. Различные способы выражения констант равновесия. Связь между ними.
Реакции, которые протекают только в одном направлении и завершаются полным превращением исходных реагирующих веществ в конечные вещества, называются необратимыми.
Обратимыми называются такие реакции, которые одновременно протекают в двух взаимно противоположных направлениях.
Химическое равновесие — состояние химической системы, в котором обратимо протекает одна или несколько химических реакций, причём скорости в каждой паре прямая-обратная реакция равны между собой. Для системы, находящейся в химическом равновесии, концентрации реагентов, температура и другие параметры системы не изменяются со временем.[1]
А2 + В2 ⇄ 2AB
Способы выражения константы равновесия
Например, для реакции окисления монооксида углерода:
2CO + O2 = 2CO2
константа равновесия может быть рассчитана по уравнению:
Если конденсированные фазы (твёрдые или жидкие) представляют собой практически чистые вещества, их активности постоянны и могут быть включены в константу равновесия (то есть в левую часть выражения выше). Условно можно принять их равными единице и, таким образом, исключить из выражения.
Например, для реакции твёрдофазного восстановления оксида железа:
FeOт + COг = Feт + CO2г
константа равновесия (при условии, что газовая фаза идеальна) имеет вид:
18. Обратимые и необратимые реакции. Состояние химического равновесия. Связь между Кр и Кс. Максимальная работа обратимого процесса.
Реакции, которые протекают только в одном направлении и завершаются полным превращением исходных реагирующих веществ в конечные вещества, называются необратимыми.
Обратимыми называются такие реакции, которые одновременно протекают в двух взаимно противоположных направлениях.
Химическое равновесие — состояние химической системы, в котором обратимо протекает одна или несколько химических реакций, причём скорости в каждой паре прямая-обратная реакция равны между собой. Для системы, находящейся в химическом равновесии, концентрации реагентов, температура и другие параметры системы не изменяются со временем.
А2 + В2 ⇄ 2AB
Связь между Кр и Кс
Для реакции аА + ЬB = сС + dD в газовой фазе константу равновесия можно выразить через равновесные парциальные давления участников реакции:
Для идеальных газовых смесей константа равновесия Кр зависит только от температуры и не зависит от давления в системе.
Cоотношение между константами равновесия Кр и Кс рассматриваемой реакции:
или в общем виде
где
— изменение числа молей газообразных
реагентов в результате реакции. Для
идеальных газовых смесей константа
равновесия Кс зависит
только от температуры.
19. Факторы, влияющие на положение равновесия. Связь константы равновесия с энергией Гиббса. Принцип Ле Шателье, его практическое применение.
Положение химического равновесия зависит от следующих параметров реакции: температуры, давления и концентрации. Влияние, которое оказывают эти факторы на химическую реакцию, подчиняются закономерности, которая была высказана в общем виде в 1885 году французским ученым Ле-Шателье.
Факторы влияющие на химическое равновесие:
1) температура
При увеличении температуры химическое равновесие смещается в сторону эндотермической (поглощение) реакции, а при понижении в сторону экзотермической (выделение) реакции.
CaCO3=CaO+CO2 -Q t↑ →, t↓ ←
N2+3H2↔2NH3 +Q t↑ ←, t↓ →
2) давление
При увеличении давления химическое равновесие смещается в сторону меньшего объёма веществ, а при понижении в сторону большего объёма. Этот принцип действует только на газы, т.е. если в реакции участвуют твердые вещества, то они в расчет не берутся.
CaCO3=CaO+CO2 P↑ ←, P↓ →
1моль=1моль+1моль
3) концентрация исходных веществ и продуктов реакции
При увеличении концентрации одного из исходных веществ химическое равновесие смещается в сторону продуктов реакции, а при увеличении концентрации продуктов реакции-в сторону исходных веществ.
S2+2O2=2SO2 [S],[O]↑ →, [SO2]↑ ←
Катализаторы не влияют на смещение химического равновесия!
Существует
полезное соотношение, связывающее
изменение свободной энергии Гиббса
в
ходе химической реакции с её константой
равновесия
:
Принцип Ле-Шателье - внешнее воздействие на систему, находящуюся в состоянии равновесия, приводит к смещению этого равновесия в направлении, при котором эффект произведенного воздействия ослабляется.
Принцип Ле Шателье позволяет управлять обратимой реакцией синтеза аммиака.
