
- •1. Предмет физической химии и ее значение. Основные разделы. Роль выдающихся ученых в развитии физической химии. Прикладное значение физической и коллоидной химии
- •Разделы:
- •Роль выдающихся ученых в развитии физической химии
- •Прикладное значение физической и коллоидной химии
- •2. Агрегатные состояния вещества, их различия с точки зрения кинетической энергии частиц. Плазменное состояние вещества
- •3. Газообразное состояние вещества. Модель идеального газа. Газовые законы. Уравнение Клапейрона - Менделеева. Универсальная газовая постоянная, её физический смысл.
- •4. Газовые законы. Их графическое выражение.
- •5. Реальные газы. Причины отклонения в поведении реальных газов от законов идеальных газов. Уравнение состояния реального газа Ван-дер-Ваальса. Изотерма реального газа.
- •6. Критическое состояние и критические параметры вещества. Газовые смеси. Состав смеси по массовым, объемным и молярным долям. Парциальное давление. Закон Дальтона.
- •8. Твердое состояние вещества. Кристаллическое и аморфное состояние. Основные типы кристаллических решеток
- •9. Предмет термодинамики и его значение для изучения химических процессов. Основные термодинамические понятия: система, процесс, функция состояния.
- •10. Первое начало термодинамики и его математическое выражение. Значение первого начала термодинамики. Термохимия.
- •11. Теплоемкость веществ. Молярная, удельная и объемная теплоемкость. Зависимость теплоемкости от температуры и давления. Связь между различными видами теплоемкости.
- •12. Работа расширения газа при изобарическом, изохорическом, изотермическом и адиабатическом процессах.
- •13. Тепловые эффекты химических превращений. Факторы, влияющие на тепловой эффект. Закон Кирхгофа. Связь между тепловыми эффектами при постоянном давлении и постоянном объеме.
- •Следствия из закона Гесса
- •Стандартная энтальпия образования
- •15. Второе начало термодинамики. Его значение и формулировки. Математическое выражение. Энтропия как характеристическая функция состояния системы.
- •Формулировки
- •16. Энергия Гиббса. Направление химических процессов. Расчет изменения энергии Гиббса по справочным данным.
- •17. Обратимые и необратимые реакции. Состояние химического равновесия. Различные способы выражения констант равновесия. Связь между ними.
- •18. Обратимые и необратимые реакции. Состояние химического равновесия. Связь между Кр и Кс. Максимальная работа обратимого процесса.
- •19. Факторы, влияющие на положение равновесия. Связь константы равновесия с энергией Гиббса. Принцип Ле Шателье, его практическое применение.
- •37. Электрохимическая коррозия металлов. Способы защиты от нее.
- •38. Основные понятия химической кинетики.
- •56. Состав, получение, классификация полимеров. Механические свойства полимеров. Взаимодействие полимеров с растворителями.
- •57. Растворы высокомолекулярных соединений. Их классификация. Свойства разбавленных растворов. Применение полимеров.
6. Критическое состояние и критические параметры вещества. Газовые смеси. Состав смеси по массовым, объемным и молярным долям. Парциальное давление. Закон Дальтона.
Критическое состояние - предельное состояние равновесия двухфазных систем, в котором обе сосуществующие фазы становятся тождественными по своим свойствам; состояние вещества в точках фазовых переходов II рода. К. с., являющееся предельным случаем равновесия двухфазных систем, наблюдается в чистых веществах при равновесии жидкость — газ, а в растворах — при фазовых равновесиях газ — газ, жидкость — жидкость, жидкость — газ, твёрдое тело — твёрдое тело. Значения параметров состояния, соответствующие К. с., называются критическими — критическое давлениерк, критическая температура Тк, критический объём Vк, критический состав хк и т. д.
Под газовой смесью понимают механическую смесь чистых веществ, называемых компонентами смеси, не вступающих друг с другом в химические реакции.
Парциальное давление - это давление, которое имел бы компонент смеси, если бы он один занимал весь объем смеси при той же температуре. Сумма парциальных давлений каждого компонента равна давлению смеси (закон Дальтона):
.
Состав газовой смеси обычно задают массовыми, объёмными или мольными долями.
М
ассовой
долей компонента
смеси g
называется
величина, равная отношению массы
компонента к массе всей смеси:
О
бъемной
долей компонента
смеси ri называется
величина, равная отношению парциального
объема компонента к объему смеси:
М
ольной
долей компонента
смеси хi называется
величина, равная отношению числа молей
этого компонента к общему числу молей
смеси:
.
7. Жидкое состояние вещества (общая ха¬рактеристика, современные представления), Поверхностное натяжение, его зависимость от температуры. Вязкость жидкостей и газов. Значение вязкости и поверхностного натяжения для различных техно¬логических процессов. Испарение и кипение жидкостей.
Жи́дкость — одно из агрегатных состояний вещества. Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.
Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится «окружить» себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшиться. С увеличением температуры величина поверхностного натяжения уменьшается и становится нулем при увеличении температуры до критической.
Кроме того, жидкости (как и газы) характеризуются вязкостью. Она определяется как способность оказывать сопротивление перемещению одной из частей относительно другой — то есть как внутреннее трение.
Поверхностное натяжение имеет большое значение также при эмалировании и глазуровании изделий, в производстве стекловолокна, остеклованных микропроводов, при сварке, спаивании, пропитке материалов. Влияние поверхностного натяжения может быть и отрицательным – округление острых ребер изделий при прессовании, сужение ленты вытягиваемого стекла.
Испарение — постепенный переход вещества из жидкости в газообразную фазу (пар). При тепловом движении некоторые молекулы покидают жидкость через её поверхность и переходят в пар. Вместе с тем, часть молекул переходит обратно из пара в жидкость. Если из жидкости уходит больше молекул, чем приходит, то имеет место испарение.
Кипение — процесс парообразования внутри жидкости. При достаточно высокой температуре давление пара становится выше давления внутри жидкости, и там начинают образовываться пузырьки пара, которые (в условиях земного притяжения) всплывают наверх.