Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по сварке Варуха 2009.doc
Скачиваний:
112
Добавлен:
16.09.2019
Размер:
2.4 Mб
Скачать

4.3.1Требования к конструированию узлов и деталей под контактную точечную и шовную сварку

Узлы летательных аппаратов, соединяемые точечной и шовной сваркой, по конструктивному признаку можно разделить на несколько групп: различные емкости типа тел вращения, плоские панели, панели одинарной и двойной кривизны, узлы сложной пространственной формы, трехслойные сотовые панели.

Для повышения жесткости обшивку подкрепляют обычно силовым набором из продольных стрингеров, поперечных шпангоутов, нервюр, диафрагм, поясов. Герметичные соединения получают шовной сваркой, а соединения внутреннего набора - чаще точечной. При изготовлении емкости толщина элементов внутреннего набора должна быть меньше толщины обшивки. Иначе при разрушении соединения емкость разгерметизируется.

Плоские или изогнутые панели усиливаются обычно продольно-поперечным набором из профилей или гофрированных листов.

В зависимости от доступности к месту сварку конструктивные элементы можно разделить на три типа: открытые, полуоткрытые и закрытые. Первые, как наиболее технологичные в условиях контактной сварки, предпочтительнее, чем вторые. Третий тип элементов резко усложняет процесс сварки из-за ограниченного доступа к месту сварки, требует применения фигурных электродов или токопроводящих подкладок, специального сварочного оборудования.

При проектировании сложных пространственных конструкций под точечную и шовную сварку необходимо предусмотреть рациональную последовательность сварки элементов, обеспечивающей доступ к зоне сварки и контроль качества сварных соединений. Сварные соединения должны быть спроектированы с учетом специфики точечной и шовной сварки из металла с хорошей свариваемостью, допустимого соотношения толщины свариваемых деталей, при строгом соблюдении номинальных размеров литого ядра, глубины вмятины, ширины шва, величины нахлестки, ширины полки профиля, расстояния от центра точки до края детали, шага между точками.

В стандартах, производственных инструкциях и в справочной литературе по контактной сварке эти данные приводятся в зависимости от толщины и свойств металла свариваемых изделий.

4.3.2Особенности точечной и шовной сварки отдельных металлов и сплавов

При контактной сварке металл в зоне образования сварного соединения подвергается термомеханическому воздействию, вызывающему протекание ряда процессов, определяющих в конечном счете качество сварного соединения.

Специальными режимами сварки необходимо устранить или уменьшить влияние этих процессов на ухудшения качества сварки. Исходными данными для определения оптимального режима сварки служат свойства металла и толщина металла деталей, а также особенности сварочного оборудования. Основные конструкционные металлы, свариваемые контактной сваркой, можно условно поделить на 6 групп. Для каждой группы можно выделить общие требования к режиму точечной или шовной сварки.

Металлы первой группы - малоуглеродистые конструкционные стали свариваются в широком диапазоне параметров режимов из-за малой чувствительности к термическому циклу, небольшой склонности к трещинообразованию. В связи с относительно высокой теплопроводностью и электропроводностью предпочтение отдают более жестким режимам.

Металлы второй группы - углеродистые стали, малолегированные стали - в зоне термического влияния образуют закалочные структуры. Высокая скорость охлаждения способствует образованию твердого и хрупкого мартенсита, что может привести к образованию трещин. Сварку этих сталей ведут на мягких режимах, время сварки больше в три раза, чем для низкоуглеродистых сталей.

Если позволяет машина, то производят термообработку сварного соединения между электродами при помощи дополнительного импульса тока. При сварке деталей толщиной больше 3 мм рекомендуется трех импульсный режим. Второй импульс тока - замедляющий процесс кристаллизации ядра, третий - термообрабатывающий импульс. Более высокая прочность сталей второй группы требует увеличения усилия сжатия в 1.5 раза.

Металлы третей группы - высоколегированные стали различных классов (коррозионно-стойкие, жаропрочные теплостойкие стали). Общими свойствами этих сталей является низкая электропроводность и теплопроводность, повышенная прочность. Для каждого класса сталей рекомендуются свои оптимальные режимы точечной и шовной сварки. Так коррозионно-стойкие стали аустенитного класса для предупреждения образования карбидов хрома по границам зерен (межкристаллитной коррозии) необходимо сваривать на жестких режимах.

Наибольшим сопротивлением деформации и большей чувствительностью к выплеску отличаются жаропрочные стали и сплавы. Для этих металлов характерен большой интервал кристаллизации и связанный с ним температурный интервал хрупкости, который влияет на склонность к образованию горячих трещин. Для качественной сварки этих сталей применяется повышенное усилие сжатия, подогревающий импульс тока, мягкие режимы сварки, увеличенное усилие проковки.

Металлы четвертой группы – титановые сплавы имеют низкую электропроводность и теплопроводность, малую жаропрочность, хорошо свариваются как на мягких, так и на жестких режимах точечной и шовной сварки.

Металлы пятой группы – алюминиевые сплавы имеют ряд свойств, которые усиливаются при точечной и шовной сварке. Алюминиевые сплавы покрыты тугоплавкой окисной пленкой (температура плавления AL2O3 – 20500C), которая не позволяет при образовании ядра получить сплошного расплавления по стыку. Перед сваркой окисную пленку обычно удаляют химическим травлением.

Вследствие высокой электропроводности и теплопроводности алюминиевых сплавов при контактной сварке требуются большие плотности тока. Так при сварке легированных сталей с толщиной деталей 1 мм плотность тока равна (400…500) А/мм2, а для алюминиевых сплавов – (2800…3200) А/мм2, что требует применение мощных машин для контактной сварки.

Большая усадка металла при кристаллизации расплавленного металла ядра, узкий температурный интервал требует применения машин с малоинерционными приводами, обеспечивающими быстрое увеличение усилия сжатия при проковке (за 0.02 с после выключения сварочного импульса тока). Опоздание приложения усилия проковки приводит к тому, что усадочные раковины, горячие трещины в затвердевшем металле ядра не залечиваются. Усилие проковки превышает усилие сжатия при пропускании тока примерно в два раза.

Чтобы обеспечить необходимый цикл изменения усилия сжатия в процессе сварки и проковки для шовной сварки алюминиевых сплавов применяют машины, обеспечивающие шаговую шовную сварку с остановкой вращения роликов на время образования сварного соединения.

Металлы шестой группы – магниевые сплавы в отличие от алюминиевых сплавов имеют повышенную пластичность, поэтому их можно сваривать без выплеска на более жестких режимах и с меньшими усилиями сжатия.

Металлы седьмой группы – латуни, низколегированные бронзы отличаются высокой электропроводностью, теплопроводностью и пластичностью. Эти сплавы сваривают на жестких режимах и больших плотностях тока, приближающихся к условиям сварки алюминиевых сплавов.

Чистую медь можно сваривать точечной сваркой на весьма жестких режимах с применением мощных конденсаторных машин и тепловых экранов под электродами или электродных вставок из вольфрама, уменьшающих отвод теплоты в электроды.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]