
- •Конспект лекций по сварке доцента каф. 104 Варухи н. А.
- •1Введение
- •1.1Краткие сведения из истории сварки.
- •1.2Классификация сварки.
- •Определение сварки по госТу.
- •Определение пайки по госТу.
- •2Процессы нагрева при сварке.
- •2.1Общие сведения о нагреве при сварке и источниках нагрева.
- •2.2Пламя газовой горелки.
- •2.3Электрическая дуга.
- •2.4Струя плазменной горелки.
- •2.5Электронный луч.
- •2.6Луч лазера.
- •2.7Трение как источник тепла при нагреве.
- •2.8Джоулево тепло при сварке.
- •2.9Основные законы, используемые для определения температуры при сварке.
- •3Виды сварки термического класса
- •3.1Дуговая сварка (дс).
- •3.1.1Классификация дуговой сварки.
- •3.1.2Дуга как источник нагрева при дс.
- •3.1.3Вольтамперная характеристика дуги (вахд).
- •3.1.4Источники питания (ип) для дуговой сварки.
- •3.1.5Требования к ип
- •3.1.6Источники питания переменного тока для рдс (сварочные трансформаторы).
- •Сварочный трансформатор с магнитным шунтом.
- •Сварочный трансформатор с подвижными вторичными обмотками.
- •3.1.7Источники постоянного тока для дуговой сварки.
- •3.2Дуговая сварка в среде защитных газов
- •3.2.1Виды газовой защиты
- •Защитные свойства различных газов
- •3.2.2Электродные сварочные материалы
- •3.2.3Cварка в инертных газах
- •Основные параметры аргонодуговой сварки
- •Достоинства и недостатки аргонодуговой сварки
- •Область применения аргонодуговой сварки
- •Дуговая сварка в среде гелия
- •3.2.4Сварка в активных газах Дуговая сварка в среде углекислого газа
- •3.2.5Атомно-водородная сварка
- •3.3Плазменная сварка Сущность плазменной сварки, схема плазмотрона
- •Область применения плазмотронов, достоинства и недостатки плазменной сварки
- •3.4Электрошлаковая сварка
- •3.4.1Параметры режима электрошлаковой сварки
- •3.4.2Оборудование для электрошлаковой сварки
- •3.4.3Достоинства электрошлаковой сварки
- •3.4.4Недостатки электрошлаковой сварки
- •3.4.5Область применения электрошлаковой сварки
- •3.5Электронно-лучевая сварка
- •3.5.1Оборудование для электронно-лучевой сварки
- •3.5.2Достоинства электронно-лучевой сварки
- •3.5.3Недостатки электронно-лучевой сварки
- •3.6Лазерная сварка
- •3.6.1Свойства лазерного излучения
- •3.6.2Сварочные установки с твердотельным лазером
- •3.6.3Сварочные установки с газовым лазером
- •3.6.4Достоинства и недостатки лазерной сварки
- •3.6.5Область применения лазерной сварки и резки
- •4Ермомеханический класс
- •4.1Контактная сварка
- •4.2Контактная точечная сварка
- •4.2.1Основные параметры режима точечной сварки
- •4.2.2Влияние основных параметров режима точечной сварки на прочность сварной точки
- •4.2.3Шунтирование тока
- •4.2.4Разновидности точечной сварки
- •4.2.5Оборудование для точечной сварки
- •4.2.6Низкочастотные машины
- •4.2.7Конденсаторные машины для точечной сварки
- •4.2.8Клеесварные соединения
- •4.3Kонтактная шовная сварка
- •4.3.1Требования к конструированию узлов и деталей под контактную точечную и шовную сварку
- •4.3.2Особенности точечной и шовной сварки отдельных металлов и сплавов
- •4.4Контактная стыковая сварка
- •4.4.1Стыковая сварка сопротивлением
- •4.4.2Стыковая сварка оплавлением
- •4.4.3Машины для стыковой сварки
- •4.4.4Проектирование узлов и деталей под стыковую сварку
- •4.4.5Конструкция и проектирование оснастки
- •4.5Диффузионная сварка
- •4.5.1Технологические особенности диффузионной сварки.
- •4.5.2Защитные среды при диффузионной сварке
- •4.5.3Особенности диффузионной сварки различных материалов
- •4.5.4Оборудование для диффузионной сварки
- •4.6Индукционно-прессовая сварка
- •5Механические виды сварки
- •5.1Холодная сварка.
- •5.2Сварка трением.
- •5.3Ультразвуковая сварка.
- •5.2. Схема установки для сварки ультразвуком: 1 – магнитострикционный преобразователь; 2 – волновод; 2 – наконечники; 4 – свариваемые детали.
- •5.4Сварка взрывом.
- •5.5Магнитоимпульсная сварка.
- •6.1Сущность процесса пайки металлов
- •6.2Припои для пайки.
- •6.3Способы пайки.
- •6.3.1Способы по формированию паяного шва. Капиллярная пайка готовым припоем.
- •Контактно - реактивная пайка.
- •Диффузная пайка.
- •Реактивно-флюсовая пайка.
- •Композиционная пайка.
- •Прессовая пайка.
- •Некапиллярная пайка
- •6.3.2Способы пайки по устранению окисной пленки Флюсовая пайка
- •Безфлюсовая пайка
- •Абразивная пайка
- •6.3.3Способы пайки по нагреву Пайка в печах
- •Пайка в соляных электрических печах-ваннах.
- •Пайка погружением в расплавленные припои.
- •Газопламенная пайка.
- •Пайка индукционная.
- •Электродуговая пайка.
- •Пайка световым и инфракрасным лучами.
- •Пайка лучом лазера.
- •Пайка электронным лучом
- •Пайка паяльником.
- •Электролитная пайка
- •Экзотермическая пайка
- •7Контроль качества сварных соединений
- •7.1Методы контроля и управления качеством сварных соединений.
- •7.1.1Факторы качества сварных соединений.
- •7.1.2Типы и виды дефектов.
- •7.1.3Классификация методов контроля.
- •7.2Физические методы неразрушающего контроля.
- •7.2.1Радиационные методы контроля. Физические основы и классификация методов.
- •7.2.2Радиографические методы контроля.
- •7.2.3Радиоскопические методы контроля.
- •7.2.4Радиометрические методы контроля.
- •7.3Ультразвуковые методы контроля.
- •7.3.1Физические основы и классификация методов.
- •7.3.2Особенности ультразвукового контроля сварных соединений.
- •7.4Магнитные и электромагнитные методы контроля.
- •7.4.1Физические основы и классификация методов.
- •7.4.2Магнитные методы контроля.
- •7.5Капиллярные методы контроля.
- •7.6Методы контроля сварных соединений течеисканием.
- •7.7Статистические методы управления качеством сварки.
3.4.3Достоинства электрошлаковой сварки
Электрошлаковой сваркой можно сварить за один проход детали любой толщины, что позволяет избавиться от шлаковых включений.
Подготовка кромок свариваемого изделия проста и не требует их скоса. Зазор мало зависит от толщины свариваемого изделия, сварка ведется по зазору одинаковой ширины, что приводит к существенному уменьшению расхода электродного материала и снижению термических деформаций свариваемого изделия. Благодаря симметрии разделки и симметричному положению в зазоре электродов практически отсутствуют угловые деформации в плоскости стыка.
Отсутствие дугового разряда обеспечивает спокойный процесс плавления металла, исключает разбрызгивание расплавленного металла и шлака при сварке на больших плотностях тока.
Сварочная ванна длительное время находится в расплавленном состоянии, что способствует более полному удалению газов из жидкого металла. Вертикальное положение сварного шва значительно облегчает всплывание газовых пузырей и удаление их из расплавленного металла. Все это способствует существенному уменьшению пористости сварного шва.
При электрошлаковой сварке расходуется мало флюса, уменьшается количество тепла для его плавления и, следовательно, уменьшаются затраты электроэнергии. Расход флюса составляет 2…5% от массы наплавленного металла. Расход электроэнергии в 1.5…2 раза меньше, чем при дуговой сварке под слоем флюса, и в 4 раза меньше, чем при ручной дуговой сварке.
3.4.4Недостатки электрошлаковой сварки
Этот способ сварки технически возможен при толщине деталей больше 16 мм и экономически выгоден при сварке изделий толщиной более 40 мм, позволяет сваривать только вертикальные швы.
Как правило швы, выполненные электрошлаковой сваркой, имеют высокое качеств. Однако с увеличением толщины свариваемого металла а также при сварке некоторых высоколегированных сталей в швах могут наблюдаться дефекты: газовые поры, непровары, несплавления и шлаковые поры, возможно образование в металле шва и в зоне термического влияния неблагоприятных структур, кристаллизационных (горячих) и холодных трещин, трещин–надрывов, трещин–отколов в зоне сплавления, а также трещин, возникающих под действием сварочных напряжений. Отсюда вытекает необходимость предварительного подогрева кромок свариваемого изделия, сложной высокотемпературной термообработки изделия после сварки, введения в расплавленный метал элементов –модификаторов (алюминия, титана, ванадия и др.).
Не допустимы вынужденные остановки процесса сварки, так как при этом образуются дефекты в сварном шве, которые при сварке толстостенного изделия практически не могут быть удалены.
3.4.5Область применения электрошлаковой сварки
Электрошлаковая сварка получила широкое распространение, оказала решающее влияние на характер и темпы технического прогресса в тяжелом, энергетическом, транспортном машиностроении. Применение этой сварки позволило заменить крупные литые, кованные и штампованные конструкции, габариты и масса которых ограничены техническими возможностями существующего оборудования, сварно-литыми, сварно-коваными, прокатно-сварными. Свариваемые металлы используются в наилучших сочетаниях, что снижает металлоемкость и изготовления сварных изделий. Электрошлаковую сварку целесообразно применять для изделий толщиной больше 40 мм, а при толщине более 100 мм и этот способ сварки остается наиболее эффективным.
В реально существующих конструкциях толщина стенки сварных изделий равна 400 мм, длина сварного шва достигает 8000 мм, диаметр кольцевых швов равен 2100 мм, рекордная толщина свариваемых изделий – 2600 мм.
Разработана техника и технология производства крупных сварных изделий из углеродистых и легированных сталей, а также из алюминиевых, медных, титановых сплавов, освоена сварка стыковых, угловых, тавровых, прямолинейных, кольцевых, переменного профиля сварных швов.
Высокую эффективность и уникальные возможности электрошлаковой сварки можно видеть при изготовлении мощных турбин гидроэлектростанций, атомных реакторов, мощных гидропрессов, станин массой 380 т, тяжелых летательных аппаратов.
Электрошлаковая сварка и наплавка находит применение для ремонтных работ при восстановлении массивных деталей, вышедших из строя в процессе эксплуатации.
Продолжаются исследования, направленные на расширение сферы применения электрошлаковой сварки и наплавки в машиностроении, на создание новых сталей и сплавов, сварочных материалов, обеспечивающих высокое качество сварных соединений без термообработки.
Совершенствуется техника и технология электрошлаковой сварки, например, в зону плавления вводят расплавленный или порошковый присадочный металл, что обеспечивает уменьшение удельных затрат на изготовление сварных изделий и высокое качество сварных швов.
Разрабатывается надежное и многофункциональное автоматическое оборудование, способное реализовать большие потенциальные возможности электрошлаковой сварки и наплавки.
Электрошлаковый процесс нашел также применение в металлургии для получения высококачественных сталей и сплавов.