Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзамен СП 2-й курс, 4-й семестр, тексты.doc
Скачиваний:
2
Добавлен:
16.09.2019
Размер:
272.38 Кб
Скачать

Pulsed-spray

A more recently developed method, the pulse-spray metal transfer mode is based on the principles of spray transfer but uses a pulsing current to melt the filler wire and allow one small molten droplet to fall with each pulse. The pulses allow the average current to be lower, decreasing the overall heat input and thereby decreasing the size of the weld pool and heat-affected zone while making it possible to weld thin workpieces. The pulse provides a stable arc and no spatter, since no short-circuiting takes place. This also makes the process suitable for nearly all metals, and thicker electrode wire can be used as well. The smaller weld pool gives the variation greater versatility, making it possible to weld in all positions. In comparison with short arc GMAW, this method has a somewhat slower maximum speed (85 mm/s or 200 in/min) and the process also requires that the shielding gas be primarily argon with a low carbon dioxide concentration. Additionally, it requires a special power source capable of providing current pulses with a frequency between 30 and 400 pulses per second. However, the method has gained popularity, since it requires lower heat input and can be used to weld thin workpieces, as well as nonferrous materials.

Заведующий кафедрой

общеобразовательных дисциплин

____________ В.П. Павлов

Уфимский государственный Кафедра общеобразовательных

авиационный технический дисциплин

университет

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 15

Факультет: АТС (СП) Вопрос: 2

History

The history of joining metals goes back several millennia, with the earliest examples of welding from the Bronze Age and the Iron Age in Europe and the Middle East. Welding was used in the construction of the iron pillar in Delhi, India, erected about 310 AD and weighing 5.4 metric tons.

Resistance welding was also developed during the final decades of the 19th century, with the first patents going to Elihu Thomson in 1885, who produced further advances over the next 15 years. Thermite welding was invented in 1893, and around that time another process, oxyfuel welding, became well established. Acetylene was discovered in 1836 by Edmund Davy, but its use was not practical in welding until about 1900, when a suitable blowtorch was developed. At first, oxyfuel welding was one of the more popular welding methods due to its portability and relatively low cost. As the 20th century progressed, however, it fell out of favor for industrial applications. It was largely replaced with arc welding, as metal coverings (known as flux) for the electrode that stabilize the arc and shield the base material from impurities continued to be developed.

World War I caused a major surge in the use of welding processes, with the various military powers attempting to determine which of the several new welding processes would be best. The British primarily used arc welding, even constructing a ship, the Fulagar, with an entirely welded hull. Arc welding was first applied to aircraft during the war as well, as some German airplane fuselages were constructed using the process. Also noteworthy is the first welded road bridge in the world, designed by Stefan Bryla of the Warsaw University of Technology in 1927, and built across the river Sfudwia Maurzyce near Lowicz, Poland in 1929.

Заведующий кафедрой

общеобразовательных дисциплин

____________ В.П. Павлов

Уфимский государственный Кафедра общеобразовательных

авиационный технический дисциплин

университет

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 16

Факультет: АТС (СП) Вопрос: 1