
- •3.1. Структуры и модели измерительных каналов
- •1. Измерительные сигналы
- •2. Спектральное представление измерительных сигналов.
- •3. Моделирование средств измерений. Структурные элементы и схемы измерительных каналов средств измерения.Модели измерительных каналов
- •4. Помехи каналов связи, особенности измерительного преобразования при наличие помех
- •5. Математические модели элементарных измерительных сигналов
- •6. Математические модели сложных измерительных сигналов
- •7.Модулированные и детектированные сигналы.
- •8. Квантование и дискретизация измерительных сигналов
- •3.2 Статические и динамические характеристики измерительных каналов
- •Принципы выбора и нормирования метрологических характеристик средств измерений.
- •Комплексы нормируемых метрологических характеристик средств измерений
- •Метрологическая надежность средств измерений
- •3.3. Вероятностные методы анализа и синтеза измерительных каналов
- •Основные понятия теории погрешностей
- •Принципы оценивания погрешностей.
- •Математические модели и характеристики погрешностей.
- •Результат измерения.
- •Систематические погрешности
- •Случайные погрешности
- •Суммирование погрешностей
- •Суммирование систематических погрешностей.
- •Способы обнаружения и устранения систематических погрешностей.
- •Правила округления результатов измерений.
- •Представление результата измерения.
- •Модели измерительных каналов
- •3.4. Информационная, алгоритмическая теории измерений
- •3.4.1 Информация
- •3.4.2 Энтропия.
- •3.4.3 Энтропийное значение погрешности.
- •3.4.4 Кодирование
- •3.4.5 Коды в иит
- •3.4.6 Структура и технические средства измерительной системы
- •3.4.7 Классификация средств измерений
- •Комплексные средства измерений
- •3.4.8 Моделирование средств измерений
- •3.5. Принципы обработки данных и расчет погрешности ик
- •Принципы обработки данных и расчет погрешности ик
- •Результат измерения.
- •Обработка результатов измерений
- •Идентификация формы распределения результатов измерений
- •Однократные измерения
- •Косвенные измерения
- •Совместные и совокупные измерения
- •Основы теории суммирования погрешностей
- •Суммирование систематических погрешностей
- •Суммирование случайных погрешностей.
- •Суммирование систематических и случайных погрешностей
- •Критерий ничтожно малой погрешности.
- •Классы точности средств измерений
Комплексные средства измерений
Комплексные средства измерений предназначены для реализации всей процедуры измерения. Согласно классификации, по роли в процессе измерения и выполняемым функциям (см. рис. 2), к ним относятся измерительные приборы и установки, измерительные системы и измерительно-вычислительные комплексы.
Измерительный прибор — средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне ее изменения и выработки сигнала измерительной информации, доступной для непосредственного восприятия наблюдателем.
Отсчетное устройство — это элемент СИ, преобразующий измерительный сигнал в форму, доступную восприятию органами чувств человека. По форме представления показаний отсчетные устройства делятся на аналоговые и цифровые.
Классификация измерительных приборов. Для учета всех особенностей многообразных измерительных приборов применяют классификацию по различным признакам. По форме индикации измеряемой величины различают измерительные приборы:
показывающие, которые допускают только отсчитывание показаний измеряемой величины, например стрелочный или цифровой вольтметр;
регистрирующие, предусматривающие регистрацию показаний на том или ином носителе информации, например на бумажной ленте. Регистрация может производится в аналоговой или цифровой форме. Различают самопишущие и печатающие приборы.
По методу преобразования измеряемой величины различают приборы прямого, компенсационного (уравновешивающего) и смешанного преобразования.
По назначению измерительные приборы делятся на амперметры, вольтметры, омметры, термометры, гигрометры и т.д.
По форме преобразования используемых измерительных сигналов приборы подразделяют на аналоговые и цифровые.
Измерительная установка. Это — совокупность функционально объединенных средств измерений (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств, предназначенная для выработки сигналов измерительной информации в удобной для непосредственного восприятия наблюдателем форме и расположенная в одном месте.
Измерительную установку, предназначенную для испытания каких-либо изделий, называют испытательным стендом (например, для измерения удельного сопротивления электрических материалов, испытания магнитных материалов).
Измерительную установку с включенными в нее эталонами, применяемую для поверки СИ, называют поверочной установкой (например, установка для поверки вольтметров). Некоторые большие измерительные установки, используемые главным образом в машиностроении, называют измерительными машинами (например, силоизмерительная машина, делительная машина).
Измерительные системы — это совокупность функционально объединенных средств измерений, средств вычислительной техники и вспомогательных устройств, соединенных между собой каналами связи, предназначенных для выработки сигналов измерительной информации о физических величинах, свойственных данному объекту, в форме, удобной для автоматической обработки, передачи и (или) использования в автоматических системах управления. Примерами могут служить системы, развернутые на крупных предприятиях и предназначенные для контроля технологического процесса производства какого-либо изделия, например производства стали, электроэнергии и т.п.
Важной их разновидностью являются информационно-измерительные системы (ИИС), предназначенные для представления измерительной информации в виде, необходимом потребителю. По организации алгоритма функционирования различают системы:
с заранее заданным алгоритмом работы, правила функционирования которых не меняются, поэтому они могут использоваться только для исследования объектов, работающих в постоянном режиме;
программируемые, алгоритм работы которых меняется по заданной программе, составляемой в соответствии с условиями функционирования объекта исследования;
адаптивные, алгоритм работы которых, а в ряде случаев и структура, изменяются, приспосабливаясь к изменениям измеряемых величин и условий работы объекта.
Наиболее перспективным методом разработки и производства ИИС является метод агрегатно-модульного построения из сравнительно ограниченного набора унифицированных, конструктивно законченных узлов или блоков. При построении агрегатированных систем должны быть решены задачи совместимости и сопряжения блоков как между собой, так и с внешними устройствами. Применительно к ИИС существует пять видов совместимости:
информационная, которая предусматривает согласованность входных и выходных сигналов по видам и номенклатуре, информативным параметрам и уровням;
конструктивная, обеспечиваемая согласованностью эстетических требований, конструктивных параметров, механических сопряжений блоков при их совместном использовании;
энергетическая, предполагающая согласованность напряжений и токов, питающих блоки;
метрологическая, обеспечивающая сопоставимость результатов измерений, рациональный выбор и нормирование метрологических характеристик блоков, а также согласование параметров входных и выходных цепей;
эксплуатационная, т.е. согласованность характеристик блоков по надежности и стабильности, а также характеристик, определяющих влияние внешних факторов.