- •1.Кинематика 8
- •2.Динамика 14
- •3.Механические колебания и волны 25
- •4.Молекулярная физика 38
- •5.Электростатика 59
- •6. Электрический ток и его характеристики 72
- •7.Электромагнетизм 74
- •8. Электромагнитная индукция закон Фарадея 82
- •9.Электромагнитные волны 84
- •10. Геометрическая оптика 86
- •11. Волновая и корпускулярная природа света 97
- •12. Квантовые свойства электромагнитного излучения 118
- •13.Строение атома 127
- •14.Атомные ядра 132
- •Введение
- •1 Кинематика
- •1.1 Материальная точка. Системы отсчета
- •1.2 Кинематика материальной точки
- •V исправить на u
- •1.3 Виды механического движения материальной точки
- •Ускоренное движение по окружности
- •Проверьте себя
- •2 Динамика
- •Основные законы механики
- •2.1 Законы Ньютона
- •2.1 Законы Ньютона
- •2.2 Закон сохранения импульса
- •2.3 Различные виды сил в механике
- •2.4 Работа, совершаемая постоянной силой
- •2.5 Работа, совершаемая переменной силой
- •2.6 Энергия
- •2.7 Кинетическая энергия
- •2.8 Консервативные силы
- •2.9 Потенциальная энергия
- •2.10 Закон сохранения энергии
- •Проверь себя
- •3 Механические колебания и волны
- •3.1 Гармонические колебания
- •3.2 Скорость и ускорение гармонического колебания
- •3.3 Колебания пружины
- •3.4 Полная энергия собственных колебаний
- •3.5 Сложение колебаний, направленных вдоль одной прямой
- •3.6. Затухающие колебания
- •3.7 Вынужденные колебания
- •3.8 Механические волны
- •3.9. Звук
- •3.10 Особенности инфразвуков и ультразвуков
- •Проверь себя
- •4 Жидкости
- •4.3.2 Уравнение Бернулли. Давление в потоке жидкости
- •4.3.3 Поверхностное натяжение
- •4.3.4 Смачивание и несмачивание
- •4.3.5 Зависимость молекулярного давления от кривизны поверхности жидкости
- •4.3.6 Капиллярные явления
- •4.3.7 Поверхностно-активные вещества
- •4.3.8 Явления переноса
- •4.3.9 Ламинарное и турбулентное течение жидкости
- •4.3.10 Формула Пуазейля
- •Проверь себя
- •5 Электростатика
- •5.1 Основные закономерности электростатики
- •5.2 Закон Кулона
- •5.3 Электростатическое поле. Напряженность поля
- •5.4 Электрические диполи
- •5.5 Понятие потока вектора напряженности. Теорема Гаусса
- •5.6 Потенциал электростатического поля
- •5.7 Связь между напряженностью электростатического поля и потенциалом
- •5.8 Конденсаторы
- •5.9 Энергия электростатического поля
- •Проверь себя
- •6. Электрический ток и его характеристики
- •6.1 Условия возникновения электрического тока
- •6.2 Закон Ома в дифференциальной форме
- •6.3 Тепловое действие электрического тока
- •Проверь себя
- •7 Электромагнетизм
- •7.1 Источники магнитного поля. Силовые линии
- •А б Рисунок 7.4 7.2 Сила Ампера. Вектор индукции магнитного поля
- •7.3 Закон Био-Савара-Лапласа
- •7.4 Сила Лоренца
- •7.5 Электромагнитные счетчики скорости крови
- •Проверь себя
- •8 Электромагнитная индукция закон Фарадея
- •8.1 Магнитный поток
- •8.2 Явление электромагнитной индукции
- •Проверь себя
- •9.Электромагнитные волны
- •9.1 Взаимные превращения электрических и магнитных полей
- •9.2 Образование свободных электромагнитных волн
- •Проверь себя
- •10 Геометрическая оптика
- •10.1 Законы геометрической оптики
- •10.2 Закон полного внутреннего отражения
- •10.4 Линзы
- •Лучевой метод нахождения расположения предмета.
- •10.5 Правила хода лучей в собирающей линзе
- •10.8 Оптическая система глаза
- •10.9 Аккомодация
- •10.10 Угол зрения. Разрешающая способность глаза
- •Проверь себя
- •11 Волновая и корпускулярная природа света
- •11.1 Волновая оптика. Диапазоны электромагнитных волн
- •11.2.1 Интерференция света
- •11.2.2 Условия минимумов и максимумов интерференции
- •11.2.3 Интерференция в тонких пленках
- •11.3 Дифракция света
- •11.3.3 Дифракция Фраунгофера на одной щели
- •11.3.4 Дифракционная решетка
- •11.3.5 Разрешающая способность дифракционной решетки
- •11.4 Поляризация света
- •11.4.1 Естественный и поляризованный свет
- •11.4.2 Способы получения поляризованного света. Поляризация при двойном лучепреломлении
- •11.4.3 Закон Малюса
- •11.4.4 Вращение плоскости поляризации
- •11.4.5 Оптическая активность в живой природе
- •Проверь себя:
- •12.1 Закон Бугера. Поглощение света
- •Проверь себя
- •Список литературы:
11.2.1 Интерференция света
Интерференцией света называется явление взаимного усиления или ослабления двух когерентных волн при их наложении в пространстве.
Рассмотрим условия наблюдения интерференции, т.е. попытаемся сформулировать условия когерентности.
Пусть в некоторой
точке пространства Р
одновременно существуют две произвольные
(в общем случае немонохроматические)
электромагнитные волны, которые
характеризуются векторами напряженности
электрических полей
и
и, векторами индукции магнитных полей
и
.
Все приборы, регистрирующие электромагнитные
волны (в том числе и человеческий глаз),
используют действие полей на заряженные
частицы. Опыт и теоретические расчеты
показывают, что при взаимодействии
электромагнитных полей с веществом
основное действие производит электрическое
поле, т.к. при прочих равных условиях,
кулоновская сила во много раз больше
силы Лоренца. Поэтому мы будем чаще
всего рассматривать действие электрической
составляющей электромагнитной волны,
а вектор напряженности электрического
поля
будем
называть световым
вектором.
Френель и Араго обнаружили на опыте, что две световые волны, распространяющиеся в одном направлении, никогда не интерферируют между собой, если Е1 и Е2 перпендикулярны друг к другу, т.е. интерферируют лишь волны, возбуждающие в некоторой точке пространства колебания одинакового направления.
Рисунок 11.2
,
.
Обозначим
фазу колебаний первой волны
,
а второй волны
.
Если 12, то амплитуда результирующего колебания, возникающего в точке Р, находится с помощью векторной диаграммы (см.рис 11.2) и определяется выражением:
. (11.1)
Усреднённое по времени значение квадрата напряжённости электрического поля называют интенсивностью света, поэтому из выражения (11.1) следует
. (11.2)
Анализируя уравнение (11.2) сделаем следующие выводы:
если разность фаз постоянна и принимает следующие значения
(m
= 0,1,2,3 и т.д), то
,
тогда
векторы напряженности электрических полей в этом случае складываются алгебраически:
,
,
т.е. интенсивность суммарного колебания оказывается больше суммы интенсивностей складываемых колебаний
.
Если разность фаз постоянна и принимает следующие значения
,
то
,
тогда
векторы напряженности электрических полей вычитаются, т.к. складываемые векторы оказываются в противофазе
,
,
т.е. интенсивность суммарного колебания оказывается меньше суммы интенсивностей складываемых колебаний
.
В
первом случае происходит усиление
результирующего колебания, во втором
–
ослабление.
Если амплитудные значения векторов
напряженности электрического поля
равны
,
то результирующий вектор напряженности
равен
,
а интенсивность при наложении волн
возрастет в четыре раза
,
во втором случае суммарный вектор
напряженности электрического поля
будет равен нулю
,
и интенсивность также будет равна нулю
.
Таким образом, усиление или ослабление интенсивности света происходит при определенных условиях, которые можно сформулировать следующим образом:
1.
складываемые световые волны должны
иметь близкие частоты (
);
2.
разность фаз складываемых световых
волн должна не зависеть от времени, т.е.
;
3.
векторы напряженности электрических
полей
и
не должны быть взаимно перпендикулярны.
Колебания или волны, которые удовлетворяют этим условиям, называются когерентными.
Рисунок
11.3
и
,
которые находятся на расстоянии d.
