- •Алфавітний покажчик
- •Агрегирование и эмержентность систем
- •Алгоритм – образ будущей деятельности
- •Алгоритм декомпозиции
- •Алгоритм проведения системного анализа
- •Блок-схема системы передачи информации
- •Большие и сложные системы
- •В чем заключается закономерность иерархической упорядоченности систем? Приведите примеры применения данной закономерности.
- •В чем заключается смысл моделирования как метода научного познания?
- •В чем заключаются особенности имитационного и машинного моделирования?
- •В чем ограничены возможности механизации?
- •В чем различие между полностью формализованным и не полностью определенным алгоритмом?
- •В чем состоит условие физической реализуемости динамической модели?
- •Виды агрегирования
- •Виды неопределённостей в измерениях
- •Внедрения результатов системного анализа
- •Возникновение и развитие системных представлений в практической деятельности человека
- •Второе определение системы
- •Выбор в условиях неопределённости
- •Выбор в условиях статистической неопределённости
- •Подведем итог
- •Выбор. Человеко-машинные системы выбора
- •Гибкость систем.
- •Групповой выбор
- •Дайте определение понятий: внешняя среда, надсистема, подведомственные системы, система в целом. Поясните их взаимосвязь
- •Дать толкование понятию «Окружающая среда»
- •Декомпозиция и агрегирование в системных исследованиях
- •Динамика моделей
- •Динамические модели системы
- •Дифференциальная энтропия
- •Достоинства и недостатки идеи оптимизации
- •Знаковые модели и сигналы
- •Знания. Разновидность знаний
- •По природе
- •По степени научности
- •По местонахождению
- •Идентификация математических моделей. Идентификация как наука.
- •Результаты наблюдений
- •Множество моделей-кандидатов
- •Возможные причины несоответствия моделей
- •Идентификация как наука
- •Иерархия моделей систем
- •Измерительные шкалы
- •Измерительные шкалы. Порядковые шкалы
- •Измерительные шкалы. Шкала наименований
- •Результаты наблюдений
- •Множество моделей-кандидатов
- •Возможные причины несоответствия моделей
- •Идентификация как наука
- •Измерительные шкалы. Шкалы отношений
- •Информационные аспекты систем
- •Искусственные и естественные системы
- •Какие системные процессы изучает кибернетика?
- •Какие системные процессы изучает синергетика?
- •Какие функции выполняет модель в деятельности человека?
- •Какова связь между вторым определением системы и ее структурной схемой?
- •Каково главное отличие между познавательной и прагматическими моделями?
- •Каковы основные события в развитии системных представлений в течении последних 150 лет?
- •Каковы особенности мышления позволяют утверждать, что оно системно?
- •Каковы причины того, что модели изменяются со временем
- •Каковы типы моделей знаний, их характеристики?
- •Каковыми признаками должна обладать часть системы, чтобы ее можно было назвать элементом?
- •Классификация систем
- •Классификация систем по описанию оператора и способу управления.
- •Классификация систем по описанию переменных
- •Классификация систем по происхождению
- •Количество информации. Свойство количества информации. Единицы измерения информации
- •Конфигуратор. Разновидности языка конфигуратора
- •Критериальный язык описания выбора Критериальный язык описания выбора
- •Математическое и компьютерное моделирование
- •Материальные модели в виде подобия
- •К условным моделям относят знаковые модели, которые подразделяются на два вида:
- •Методы генерирования альтернатив
- •Многократный выбор
- •Модели систем. Первое определение системы Модель "Черного ящика"
- •Модель состава системы
- •Структурная модель системы
- •Модель «черный ящик». Сложности построения модели «черн. Ящик»
- •Модель состава системы. Сложность построения модели состава системы
- •Модель структуры системы
- •Модель структуры системы. Сложности построения модели структуры
- •Может ли какой-нибудь объект или явление быть несистемным? Обоснуйте ответ
- •Назовите главное условие автоматизации?
- •Описание выбора на языке бинарных отношений
- •Описание ситуации в «нечетких» представлениях
- •Опишите три способа повышения производительности труда механизация
- •Автоматизация
- •Кибернетизация
- •Определите понятие модели
- •Оптимизационный выбор
- •Основные положения теории информации
- •Основные признаки развивающихся систем
- •Отношения и структуры
- •Охарактеризуйте историю развития системных представлений
- •Охарактеризуйте понятия «системный анализ» и «системный подход». В чем заключаются принципы системного подхода?
- •Первое определение системы
- •Перечислите основные признаки системы
- •Перечислить некоторые типы классификаций систем !!! Білети №52-54 !!!
- •Познавательные и прагматические модели
- •Понятие «лингвистическая модель».
- •Наиболее важные свойства моделей, в том числе лингвистических.
- •Понятие «проблемная ситуация»
- •Понятие гетерогенной и гомогенной структур систем
- •Понятие модели системы
- •2.1. Множественность моделей системы
- •2.2. Первое определение системы
- •2.2.1. Определение
- •2.2.2. Проблемы и системы
- •Существуют такие модели систем:
- •Понятие об эволюционном моделировании и генетических алгоритмах
- •Понятие субъективных и объективных целей существования систем
- •Понятие эмерджентности
- •Представление знаний
- •Приведите аргументы в пользу системности материи?
- •Пропускная способность Гауссова канала святи
- •Различие между большими и сложными системами
- •Разновидности классификаций систем
- •Разновидности неопределённостей
- •Разновидности отбора
- •Системность – всеобщее свойство материи и познания
- •Соответствие и различие между моделью и действительностью
- •Соответствие между моделью и действительностью: конечность, упрощенность, приближенность, адекватность, истинность моделей
- •Способы воплощения моделей. Абстрактные модели
- •Способы реализации моделей
- •Способы решения многокритериальных задач
- •Статистические измерения. Методы обработки экспериментальных данных
- •Статические и динамические модели
- •Структура системы. Разновидности структур систем
- •Структурная схема системы
- •Структурная схема как соединение моделей
- •Теория игр. Общее представление
- •Типы сигналов. Реализация сигналов
- •Три ветви науки, изучающие системы
- •Условия реализации свойств моделей
- •Соответствие между моделью и действительностью
- •Формальная и содержательная модели
- •Функционирование и развитие систем
- •Цель как модель
- •Частотно временное представление сигналов
- •Классические частотно-временные представления.
- •Что заставляет нас пользоваться моделями объектов вместо самих объектов?
- •Что называется алгоритмом?
- •Что необходимо для перехода от моделей лингвистических к моделям математическим?
- •Что общего и в чем различие между понятием элемента и его моделью «черного ящика»?
- •Что представляет собой сетевая структура? в каких случаях применяются сетевые структуры? Какие понятия используются при применении сетевых моделей?
- •Что такое интегрировать модели?
- •Что такое категория, функтор?
- •Что такое проблемная ситуация?
- •Что такое системный анализ?
- •Шкала интервалов
- •Шкала отношений в измерении
- •Эволюция моделей
- •Эксперимент и модель. Активный эксперимент
- •Эксперимент и модель. Пассивный эксперимент
- •Экспертный выбор
- •Энтропия и ее свойства
- •Этапы компьютерного моделирования объектов и явлений
- •Разработка компьютерной модели для проведения эксперимента:
- •Компьютерный эксперимент:
- •Этапы системного анализа
- •Этика в системном анализе
- •Язык функции выбора
- •7.6 Иллюстрация различных аксиом, накладываемых на функции выбора
Многократный выбор
Возможны ситуации, в которых выбор повторяется многократно, причем каждый последующий выбор происходит в условиях, отличающихся от тех, в которых происходил предыдущий. Это придает динамику самому процессу выбора и его последствиям. Конкретный характер происходящих при этом изменений зависит от многих факторов: самой природы множества альтернатив, степени влияния предыдущего выбора на последующий, от того, насколько и как именно учитываются происшедшие изменения на очередном шаге выбора, и т.д. При этом возможные постановки задач весьма разнообразны, но очень немногие из этих задач на сегодняшний день рассмотрены.
Наиболее подробно изучены процессы принятия статистических решений с адаптацией, т.е. с обратной связью по решениям, иначе говоря, принятие решения на очередном шаге с учетом решений, принятых на предыдущих шагах. Примером могут служить радиолокационные станции, постоянно ведущие обзор заданной зоны, накапливающие информацию о помеховой обстановке в зоне обзора и использующие эту информацию при обработке принятых сигналов для обнаружения целей. Главный результат состоит в том, что такая адаптация может улучшить качество решений.
Другой пример процессов многократного выбора дает естественный; отбор. Своеобразие таких процессов изучается теорией эволюции, математической биологией;
Для нас основной интерес представляют процессы сознательного ! выбора, поэтому, обращаясь к многократному выбору, мы приходим, в частности, к задачам целенаправленного многократного выбора, т.е. искусственного отбора, селекции. Тенденции, возникающие в ходе селекции, сильно зависят от конкретных способов формирования и пополнения отборных ("элитных") групп. Даже простейшие модели селекции обнаруживают интересные эффекты в эволюции элитных групп. Эти эффекты следует иметь в виду при комплектовании любых групп элементов, в чем-то лучших, чем остальные.
Модели систем. Первое определение системы Модель "Черного ящика"
В
сякая
система – это нечто цельное и выделенное
из окружающей среды. Система и среда
взаимодействуют между собой. В системологии
используется представление о входах и
выходах системы. Вход системы – это
воздействие на систему со стороны
внешней среды, а выход – это воздействие,
оказываемое системой на окружающую
среду. Модель "черного ящика"
используется в тех случаях, когда
внутреннее устройство системы не
представляет интереса, но важно описать
ее внешние взаимодействия.
Н
апример,
в любой инструкции по использованию
бытовой техники дается описание работы
с ней на уровне входов и выходов: как
включить, как регулировать работу, что
получим на выходе. Такое представление
может быть вполне достаточным для
пользователя данной техникой.
Модель состава системы
Модель состава системы дает описание входящих в нее элементов и подсистем, но не рассматривает связей между ними. Например, модель состава системы "Школа":
Каждая из отмеченных на рисунке составляющих системы является подсистемой со своим составом. Поэтому для этих подсистем также можно построить свои модели состава.
Разумеется, такой модели недостаточно для того, чтобы понять, как функционирует школа. И все-таки она дает более подробное представление, чем модель "черного ящика".
