
- •Алфавітний покажчик
- •Агрегирование и эмержентность систем
- •Алгоритм – образ будущей деятельности
- •Алгоритм декомпозиции
- •Алгоритм проведения системного анализа
- •Блок-схема системы передачи информации
- •Большие и сложные системы
- •В чем заключается закономерность иерархической упорядоченности систем? Приведите примеры применения данной закономерности.
- •В чем заключается смысл моделирования как метода научного познания?
- •В чем заключаются особенности имитационного и машинного моделирования?
- •В чем ограничены возможности механизации?
- •В чем различие между полностью формализованным и не полностью определенным алгоритмом?
- •В чем состоит условие физической реализуемости динамической модели?
- •Виды агрегирования
- •Виды неопределённостей в измерениях
- •Внедрения результатов системного анализа
- •Возникновение и развитие системных представлений в практической деятельности человека
- •Второе определение системы
- •Выбор в условиях неопределённости
- •Выбор в условиях статистической неопределённости
- •Подведем итог
- •Выбор. Человеко-машинные системы выбора
- •Гибкость систем.
- •Групповой выбор
- •Дайте определение понятий: внешняя среда, надсистема, подведомственные системы, система в целом. Поясните их взаимосвязь
- •Дать толкование понятию «Окружающая среда»
- •Декомпозиция и агрегирование в системных исследованиях
- •Динамика моделей
- •Динамические модели системы
- •Дифференциальная энтропия
- •Достоинства и недостатки идеи оптимизации
- •Знаковые модели и сигналы
- •Знания. Разновидность знаний
- •По природе
- •По степени научности
- •По местонахождению
- •Идентификация математических моделей. Идентификация как наука.
- •Результаты наблюдений
- •Множество моделей-кандидатов
- •Возможные причины несоответствия моделей
- •Идентификация как наука
- •Иерархия моделей систем
- •Измерительные шкалы
- •Измерительные шкалы. Порядковые шкалы
- •Измерительные шкалы. Шкала наименований
- •Результаты наблюдений
- •Множество моделей-кандидатов
- •Возможные причины несоответствия моделей
- •Идентификация как наука
- •Измерительные шкалы. Шкалы отношений
- •Информационные аспекты систем
- •Искусственные и естественные системы
- •Какие системные процессы изучает кибернетика?
- •Какие системные процессы изучает синергетика?
- •Какие функции выполняет модель в деятельности человека?
- •Какова связь между вторым определением системы и ее структурной схемой?
- •Каково главное отличие между познавательной и прагматическими моделями?
- •Каковы основные события в развитии системных представлений в течении последних 150 лет?
- •Каковы особенности мышления позволяют утверждать, что оно системно?
- •Каковы причины того, что модели изменяются со временем
- •Каковы типы моделей знаний, их характеристики?
- •Каковыми признаками должна обладать часть системы, чтобы ее можно было назвать элементом?
- •Классификация систем
- •Классификация систем по описанию оператора и способу управления.
- •Классификация систем по описанию переменных
- •Классификация систем по происхождению
- •Количество информации. Свойство количества информации. Единицы измерения информации
- •Конфигуратор. Разновидности языка конфигуратора
- •Критериальный язык описания выбора Критериальный язык описания выбора
- •Математическое и компьютерное моделирование
- •Материальные модели в виде подобия
- •К условным моделям относят знаковые модели, которые подразделяются на два вида:
- •Методы генерирования альтернатив
- •Многократный выбор
- •Модели систем. Первое определение системы Модель "Черного ящика"
- •Модель состава системы
- •Структурная модель системы
- •Модель «черный ящик». Сложности построения модели «черн. Ящик»
- •Модель состава системы. Сложность построения модели состава системы
- •Модель структуры системы
- •Модель структуры системы. Сложности построения модели структуры
- •Может ли какой-нибудь объект или явление быть несистемным? Обоснуйте ответ
- •Назовите главное условие автоматизации?
- •Описание выбора на языке бинарных отношений
- •Описание ситуации в «нечетких» представлениях
- •Опишите три способа повышения производительности труда механизация
- •Автоматизация
- •Кибернетизация
- •Определите понятие модели
- •Оптимизационный выбор
- •Основные положения теории информации
- •Основные признаки развивающихся систем
- •Отношения и структуры
- •Охарактеризуйте историю развития системных представлений
- •Охарактеризуйте понятия «системный анализ» и «системный подход». В чем заключаются принципы системного подхода?
- •Первое определение системы
- •Перечислите основные признаки системы
- •Перечислить некоторые типы классификаций систем !!! Білети №52-54 !!!
- •Познавательные и прагматические модели
- •Понятие «лингвистическая модель».
- •Наиболее важные свойства моделей, в том числе лингвистических.
- •Понятие «проблемная ситуация»
- •Понятие гетерогенной и гомогенной структур систем
- •Понятие модели системы
- •2.1. Множественность моделей системы
- •2.2. Первое определение системы
- •2.2.1. Определение
- •2.2.2. Проблемы и системы
- •Существуют такие модели систем:
- •Понятие об эволюционном моделировании и генетических алгоритмах
- •Понятие субъективных и объективных целей существования систем
- •Понятие эмерджентности
- •Представление знаний
- •Приведите аргументы в пользу системности материи?
- •Пропускная способность Гауссова канала святи
- •Различие между большими и сложными системами
- •Разновидности классификаций систем
- •Разновидности неопределённостей
- •Разновидности отбора
- •Системность – всеобщее свойство материи и познания
- •Соответствие и различие между моделью и действительностью
- •Соответствие между моделью и действительностью: конечность, упрощенность, приближенность, адекватность, истинность моделей
- •Способы воплощения моделей. Абстрактные модели
- •Способы реализации моделей
- •Способы решения многокритериальных задач
- •Статистические измерения. Методы обработки экспериментальных данных
- •Статические и динамические модели
- •Структура системы. Разновидности структур систем
- •Структурная схема системы
- •Структурная схема как соединение моделей
- •Теория игр. Общее представление
- •Типы сигналов. Реализация сигналов
- •Три ветви науки, изучающие системы
- •Условия реализации свойств моделей
- •Соответствие между моделью и действительностью
- •Формальная и содержательная модели
- •Функционирование и развитие систем
- •Цель как модель
- •Частотно временное представление сигналов
- •Классические частотно-временные представления.
- •Что заставляет нас пользоваться моделями объектов вместо самих объектов?
- •Что называется алгоритмом?
- •Что необходимо для перехода от моделей лингвистических к моделям математическим?
- •Что общего и в чем различие между понятием элемента и его моделью «черного ящика»?
- •Что представляет собой сетевая структура? в каких случаях применяются сетевые структуры? Какие понятия используются при применении сетевых моделей?
- •Что такое интегрировать модели?
- •Что такое категория, функтор?
- •Что такое проблемная ситуация?
- •Что такое системный анализ?
- •Шкала интервалов
- •Шкала отношений в измерении
- •Эволюция моделей
- •Эксперимент и модель. Активный эксперимент
- •Эксперимент и модель. Пассивный эксперимент
- •Экспертный выбор
- •Энтропия и ее свойства
- •Этапы компьютерного моделирования объектов и явлений
- •Разработка компьютерной модели для проведения эксперимента:
- •Компьютерный эксперимент:
- •Этапы системного анализа
- •Этика в системном анализе
- •Язык функции выбора
- •7.6 Иллюстрация различных аксиом, накладываемых на функции выбора
Алгоритм проведения системного анализа
Тот факт, что в арсенале системного анализа имеются как формальные процедуры, так и операции, которые выполняются людьми неформально, и даже то, что в некоторых случаях анализ вообще не использует формальные процедуры, тем не менее не означает, что нельзя говорить об алгоритмах системного анализа. Наоборот, требование системности применимо прежде всего к самому системному анализу.
Неоднократно имели место попытки создать достаточно общий, универсальный алгоритм системного анализа. Было бы необоснованно утверждать, что какой-то из них «более правильный» или «более универсальный». Положение становится ясным , если вспомнить, что алгоритм является прагматической(нормативной) моделью деятельности. Выбрав конкретную модель, мы должны следовать предписаниям именно этого алгоритма, но это не означает, что нельзя было воспользоваться другой моделью. Из целевой предназначенности моделей вытекает, что для каждого случая конкретный алгоритм предпочтительнее другого, однако отсюда не следует, что не может существовать еще одна, лучшая реализация алгоритма или что в каком-то другом случае порядок предпочтения алгоритмов не окажется противоположным.
Алгоритмы проведения системного анализа могут быть различными. В зависимости от степени сложности анализируемой проблемы употребляются «линейные» алгоритмы(в простейших случаях), алгоритмы с циклами (чем сложнее система-тем больше циклов), сложные «последовательные», то есть конструируемые в ходе исследования алгоритмы
Блок-схема системы передачи информации
Большие и сложные системы
В настоящее время однозначного, четкого определения сложной системы нет. Известны различные подходы и предложены различные формальные признаки ее определения. Так, советский ученый Г.Н. Поваров предлагает относить к сложным системы имеющие 104-107 элементов; к ультрасложным - системы, состоящие из 107-1030 элементов; и к суперсистемам – системы из 1030-10200 элементов.
Такой подход имеет тот недостаток, что данное определение сложности является относительным, а не абсолютным. Английский кибернетик С. Бир предлагает к сложным относить системы, описываемые на языке теоретико-вероятностных методов (мозг, экономика, форма и т.п.).
Сложной системой называется система, в модели которой недостаточно информации для эффективного управления этой системой.
Таким образом, признаком простоты системы является достаточность информации для ее управления. Если же результат управления, полученный с помощью модели, будет неожиданным, то такую систему относят к сложной.
Для перевода системы в разряд простой необходимо получение недостающей информации о ней и включение ее в модель.
От сложных систем необходимо отличать большие системы: система, для актуализации модели которой в целях управления недостает материальных ресурсов (машинного времени, емкости памяти, других материальных средств моделирования) называется большой
К таким системам относятся экономические, организационно-управленческие, нейрофизиологические, биологические и т.п. системы. Способом перевода больших систем в простые является создание новых более мощных средств вычислительной техники.
Как видно из определений, понятия большой и сложной системы являются разными. Однако в литературе эти понятия определены не однозначно.
Некоторые авторы вообще не используют этих понятий, другие используют их как синонимы, а некоторые считают разницу между ними чисто количественной.
|
Система |
Малая |
Большая |
Простая |
Сложная |
1 |
Исправный бытовой прибор для пользователя |
+ |
|
+ |
|
2 |
Неисправный бытовой прибор для мастера |
+ |
|
|
+ |
3 |
Шифрозамок для похитителя |
|
+ |
+ |
|
4 |
Мозг, живой организм |
|
+ |
|
+ |