
- •Алфавітний покажчик
- •Агрегирование и эмержентность систем
- •Алгоритм – образ будущей деятельности
- •Алгоритм декомпозиции
- •Алгоритм проведения системного анализа
- •Блок-схема системы передачи информации
- •Большие и сложные системы
- •В чем заключается закономерность иерархической упорядоченности систем? Приведите примеры применения данной закономерности.
- •В чем заключается смысл моделирования как метода научного познания?
- •В чем заключаются особенности имитационного и машинного моделирования?
- •В чем ограничены возможности механизации?
- •В чем различие между полностью формализованным и не полностью определенным алгоритмом?
- •В чем состоит условие физической реализуемости динамической модели?
- •Виды агрегирования
- •Виды неопределённостей в измерениях
- •Внедрения результатов системного анализа
- •Возникновение и развитие системных представлений в практической деятельности человека
- •Второе определение системы
- •Выбор в условиях неопределённости
- •Выбор в условиях статистической неопределённости
- •Подведем итог
- •Выбор. Человеко-машинные системы выбора
- •Гибкость систем.
- •Групповой выбор
- •Дайте определение понятий: внешняя среда, надсистема, подведомственные системы, система в целом. Поясните их взаимосвязь
- •Дать толкование понятию «Окружающая среда»
- •Декомпозиция и агрегирование в системных исследованиях
- •Динамика моделей
- •Динамические модели системы
- •Дифференциальная энтропия
- •Достоинства и недостатки идеи оптимизации
- •Знаковые модели и сигналы
- •Знания. Разновидность знаний
- •По природе
- •По степени научности
- •По местонахождению
- •Идентификация математических моделей. Идентификация как наука.
- •Результаты наблюдений
- •Множество моделей-кандидатов
- •Возможные причины несоответствия моделей
- •Идентификация как наука
- •Иерархия моделей систем
- •Измерительные шкалы
- •Измерительные шкалы. Порядковые шкалы
- •Измерительные шкалы. Шкала наименований
- •Результаты наблюдений
- •Множество моделей-кандидатов
- •Возможные причины несоответствия моделей
- •Идентификация как наука
- •Измерительные шкалы. Шкалы отношений
- •Информационные аспекты систем
- •Искусственные и естественные системы
- •Какие системные процессы изучает кибернетика?
- •Какие системные процессы изучает синергетика?
- •Какие функции выполняет модель в деятельности человека?
- •Какова связь между вторым определением системы и ее структурной схемой?
- •Каково главное отличие между познавательной и прагматическими моделями?
- •Каковы основные события в развитии системных представлений в течении последних 150 лет?
- •Каковы особенности мышления позволяют утверждать, что оно системно?
- •Каковы причины того, что модели изменяются со временем
- •Каковы типы моделей знаний, их характеристики?
- •Каковыми признаками должна обладать часть системы, чтобы ее можно было назвать элементом?
- •Классификация систем
- •Классификация систем по описанию оператора и способу управления.
- •Классификация систем по описанию переменных
- •Классификация систем по происхождению
- •Количество информации. Свойство количества информации. Единицы измерения информации
- •Конфигуратор. Разновидности языка конфигуратора
- •Критериальный язык описания выбора Критериальный язык описания выбора
- •Математическое и компьютерное моделирование
- •Материальные модели в виде подобия
- •К условным моделям относят знаковые модели, которые подразделяются на два вида:
- •Методы генерирования альтернатив
- •Многократный выбор
- •Модели систем. Первое определение системы Модель "Черного ящика"
- •Модель состава системы
- •Структурная модель системы
- •Модель «черный ящик». Сложности построения модели «черн. Ящик»
- •Модель состава системы. Сложность построения модели состава системы
- •Модель структуры системы
- •Модель структуры системы. Сложности построения модели структуры
- •Может ли какой-нибудь объект или явление быть несистемным? Обоснуйте ответ
- •Назовите главное условие автоматизации?
- •Описание выбора на языке бинарных отношений
- •Описание ситуации в «нечетких» представлениях
- •Опишите три способа повышения производительности труда механизация
- •Автоматизация
- •Кибернетизация
- •Определите понятие модели
- •Оптимизационный выбор
- •Основные положения теории информации
- •Основные признаки развивающихся систем
- •Отношения и структуры
- •Охарактеризуйте историю развития системных представлений
- •Охарактеризуйте понятия «системный анализ» и «системный подход». В чем заключаются принципы системного подхода?
- •Первое определение системы
- •Перечислите основные признаки системы
- •Перечислить некоторые типы классификаций систем !!! Білети №52-54 !!!
- •Познавательные и прагматические модели
- •Понятие «лингвистическая модель».
- •Наиболее важные свойства моделей, в том числе лингвистических.
- •Понятие «проблемная ситуация»
- •Понятие гетерогенной и гомогенной структур систем
- •Понятие модели системы
- •2.1. Множественность моделей системы
- •2.2. Первое определение системы
- •2.2.1. Определение
- •2.2.2. Проблемы и системы
- •Существуют такие модели систем:
- •Понятие об эволюционном моделировании и генетических алгоритмах
- •Понятие субъективных и объективных целей существования систем
- •Понятие эмерджентности
- •Представление знаний
- •Приведите аргументы в пользу системности материи?
- •Пропускная способность Гауссова канала святи
- •Различие между большими и сложными системами
- •Разновидности классификаций систем
- •Разновидности неопределённостей
- •Разновидности отбора
- •Системность – всеобщее свойство материи и познания
- •Соответствие и различие между моделью и действительностью
- •Соответствие между моделью и действительностью: конечность, упрощенность, приближенность, адекватность, истинность моделей
- •Способы воплощения моделей. Абстрактные модели
- •Способы реализации моделей
- •Способы решения многокритериальных задач
- •Статистические измерения. Методы обработки экспериментальных данных
- •Статические и динамические модели
- •Структура системы. Разновидности структур систем
- •Структурная схема системы
- •Структурная схема как соединение моделей
- •Теория игр. Общее представление
- •Типы сигналов. Реализация сигналов
- •Три ветви науки, изучающие системы
- •Условия реализации свойств моделей
- •Соответствие между моделью и действительностью
- •Формальная и содержательная модели
- •Функционирование и развитие систем
- •Цель как модель
- •Частотно временное представление сигналов
- •Классические частотно-временные представления.
- •Что заставляет нас пользоваться моделями объектов вместо самих объектов?
- •Что называется алгоритмом?
- •Что необходимо для перехода от моделей лингвистических к моделям математическим?
- •Что общего и в чем различие между понятием элемента и его моделью «черного ящика»?
- •Что представляет собой сетевая структура? в каких случаях применяются сетевые структуры? Какие понятия используются при применении сетевых моделей?
- •Что такое интегрировать модели?
- •Что такое категория, функтор?
- •Что такое проблемная ситуация?
- •Что такое системный анализ?
- •Шкала интервалов
- •Шкала отношений в измерении
- •Эволюция моделей
- •Эксперимент и модель. Активный эксперимент
- •Эксперимент и модель. Пассивный эксперимент
- •Экспертный выбор
- •Энтропия и ее свойства
- •Этапы компьютерного моделирования объектов и явлений
- •Разработка компьютерной модели для проведения эксперимента:
- •Компьютерный эксперимент:
- •Этапы системного анализа
- •Этика в системном анализе
- •Язык функции выбора
- •7.6 Иллюстрация различных аксиом, накладываемых на функции выбора
Какова связь между вторым определением системы и ее структурной схемой?
Второе определение системы: система есть совокупность взаимосвязанных элементов, обособленная от среды и взаимодействующая с ней как целое.
Очевидно, что представленные определения охватывают модели «черного ящика», состава и структуры. Все вместе они образуют еще одну модель, которую будем называть структурной схемой системы. В структурной схеме указываются все элементы системы, все связи между элементами внутри системы и связи определенных элементов с окружающей средой (входы и выходы системы).
Все структурные схемы имеют нечто общее и это побудило математиков рассматривать их как объект математических исследований. Для этого пришлось абстрагироваться от содержательной стороны структурных схем. В результате получилась схема, в которой обозначается только наличие элементов и связей между ними. Такая схема называется графом.
Если направления связей не обозначаются, то граф называется неориентированным, при наличии стрелок — ориентированным. Данная пара вершин может быть соединена любым количеством ребер; вершина может быть соединена сама с собой (тогда ребро называется петлей). Если в графе требуется отразить другие различия между элементами или связями, то либо приписывают ребрам различные веса (взвешенные графы), либо раскрашивают вершины или ребра (раскрашенные графы).
Для графов построена интересная и содержательная теория, имеющая многочисленные приложения. Разнообразные задачи этой теории связаны с различными преобразованиями графов, а также с возможностью рассмотрения различных отношений на графах: весов, рангов, цветов, вероятностных характеристик (стохастические графы) и т.д. Поскольку множества вершин и ребер формально можно поменять местами, получается два разных представления системы в виде вершинного или реберного графа.
Графы могут изображать любые структуры, если не накладывать ограничений на пересекаемость ребер. Некоторые типы структур имеют особенности, важные для практики, они выделены из других и получили специальные названия. Так, в организационных системах часто встречаются линейные, древовидные (иерархические) и матричные структуры; в технических системах чаще встречаются сетевые структуры; особое место в теории систем занимают структуры с обратными связями, которые соответствуют кольцевым путям в ориентированных графах.
Структурная схема системы является наиболее подробной и полной моделью любой системы на данном этапе нашего познания. При этом всегда остается актуальным вопрос об адекватности этой модели, разрешаемый только на практике.
Типы структурных схем:
Каково главное отличие между познавательной и прагматическими моделями?
Пізнавальна модель – це форма організації і представлення знань, засіб з’єднання нових знань з уже існуючими. При знаходженні відмінностей між моделлю та реальністю, модель «підганяють» під реальність.
П
рагматична
модель - це засіб управління, засіб
організації практичних дій, спосіб
представлення зразків правильних дій
або їх результатів. По суті, прагматична
модель є робочим представленням цілей.
При знаходженні відмінностей між моделлю
та реальністю, реальність «підганяють»
під модель.
Таким чином, основні відмінності між моделями: пізнавальна модель відображає існуюче, а прагматична – не існуюче, але бажане і (можливо) здійсненне. Не всі моделі легко класифікувати по такому признаку (наприклад, витвори мистецтва, іграшки, географічні карти). До того ж прагматичні моделі також зазнають змін як і пізнавальні.