
- •1. Сущность, фундаментальные принципы сау и сар.
- •2. Классификация сау и сар.
- •3.Энергетические установки как объекты автоматического регулирования
- •4.Основные схемы сар
- •7.Пропорциональные сар
- •2.4.2. Пропорционально-интегральные регуляторы
- •6.5.Программы и законы регулирования
- •6. Программы регулирования
- •5. Законы регулирования
- •8. Моделирование систем регулирования. Типовые динамические звенья.
- •9. Усилительное звено.
- •10. Апериодическое (инерционное).
- •12.Интегрирующие звенья, характеристики
- •11.Колебательные звенья, характеристики
- •13.Дифференцирующие и форсирующие звенья, характеристики.
- •14.Дифференциальное уравнение сар и их линеаризация.
- •15.Структурные схемы.
- •16.Соединения динамических звеньев.
- •17.Характеристический полином и характеристическое уравнение.
- •19.Частотные характеристики интегрирующих систем.
- •20.Частотные характеристики статических систем.
- •22.Чх систем с обратной связью
- •23. Типовые временные характеристики
- •24. Показатели качества переходной характеристики
- •25. Понятие устойчивости линеаризованных систем
- •27. Критерий Найквиста
- •28. Запасы устойчивости замкнутой системы
- •29. Передаточная функция и пространство состояний
- •30. Точность сар
- •33. Передаточная функция и ее связь с дифференциальным уравнением
- •31 Математическое описание линейных систем
- •32 Амплитудные и фазовые частотные характеристики
- •34 Классификация, принцип действия и устройство типовых регуляторов
- •35 Точность систем регулирования по задающим воздействиям
- •36 Точность систем регулирования по возмущающим воздействиям
- •37 Входные воздействия в виде ступенчатого сигнала, скачков скорости и ускорения, гармонического и стохастического сигналов
- •56. Синтез пи регуляторов
- •38 Устойчивость линейных сар
- •54. Управление неустойчивыми объектами.
- •55. Анализ пи регуляторов,
- •39 Критерий устойчивости (Гурвица)
- •40 Критерий устойчивости (Найквиста)
- •45. Методы анализа сар
- •46. Методы синтеза сар
- •59. Диаграмма Вышнеградского
- •44. Численные способы исследования сар
- •47. Основные задачи синтеза регуляторов
- •58. Метод корневого годографа
- •48. Методы повышения статической точности
- •53.Быстрый синтез систем управления методом логарифмических характеристик
- •49. Коэффициенты статических ошибок
- •50, 51 Статическое и астатическое сар.
- •50. Статическая сар. Статическая точность сар.
- •51. Астатическая сар. Динамическая точность сар.
- •52. Методы улучшения динамических параметров
- •26. Алгебраические критерии устойчивости линейных сау
- •Критерий устойчивости Гурвица. 1895 г.
13.Дифференцирующие и форсирующие звенья, характеристики.
Дифференцирующее.Идеальное дифференцирующее.
Выходная величина пропорциональна производной по времени от входной:
; W(s)
= K*s
При ступенчатом входном сигнале выходной сигнал представляет собой импульс (-функцию): h(t) = K.(t).
Реальное дифференцирующее.
Идеальные дифференцирующие звенья физически не реализуемы. Большинство объектов, которые представляют собой дифференцирующие звенья, относятся к реальным дифференцирующим звеньям, передаточные функциикоторыхимеют вид
W(s)
=
.
Переходная
характеристика:
.
Пример звена: электрогенератор. Входной параметр – угол поворота ротора, выходной – напряжение. Если ротор повернуть на некоторый угол, то на клеммах появится напряжение, но если ротор далее не вращать, напряжение снизится до нуля. Резко упасть оно не может вследствие наличия индуктивности у обмотки.
Форсирующее звено. Форсирующим называют звено, которое описывается уравнением:
или передаточной функцией
Где k – коэффициент передачи звена.
При этом переходная функция звена и его функция веса соответственно определяются соотношениями:
Частотные характеристики звена (рис. 27а-в) определяются соотношениями:
Логарифмические частотные характеристики звена (рис. 28) определяются по формуле:
Форсирующее звено 2-го порядка. Передаточная функция форсирующего звена 2-го порядка имеет вид:
Логарифмические частотные характеристики звена имеют вид:
14.Дифференциальное уравнение сар и их линеаризация.
Известно, что любое движение, процессы передачи, обмена, преобразования энергии и вещества математически можно описать в виде дифференциальных уравнений (ДУ). Любые процессы в АСР также можно описать дифференциальными уравнениями, которые определяют сущность происходящих в системе процессов независимо от ее конструкции и т.д. Решив ДУ, можно найти характер изменения регулируемой переменной в переходных и установившихся режимах при различных воздействиях на систему.
Для упрощения задачи нахождения ДУ, описывающего работу АСР в целом, систему разбивают на ее отдельные элементы, переходные процессы в которых описываются достаточно простыми ДУ. Так как ДУ описывают работу системы независимо от физической сущности протекающих в ней процессов, то при декомпозиции системы нет необходимости учитывать их физическую целостность. Для каждого элемента структурной схемы необходимо составить ДУ, определяющее зависимость изменения выходной величины от входной.
Так как выходная величина предыдущего элемента является входной для последующего, то, определив ДУ отдельных элементов, можно найти ДУ системы.
Однако такой метод применим только в частных случаях. Дело в том, что в большинстве случаев в реальных элементах системы связь междувходной и выходной величинами является нелинейной и часто задается в графической форме. Поэтому, даже если ДУ системы и будет получено, оно будет нелинейным. А аналитическое решение нелинейных ДУ возможно далеко не всегда.
Для решения этой проблемы учитывают, что в процессе регулирования отклонения всех изменяющихся величин от их установившихся значений малы, и поэтому возможна замена нелинейных ДУ приближенными линейными ДУ, то есть возможна линеаризация дифференциальных уравнений.
Рассмотрим сущность процесса линеаризации на примере сушильного шкафа. Зависимость температуры объекта от подаваемого напряжения в большинстве случаев нелинейна и имеет вид, представленный на рисунке.
Графически линеаризацию некоторого уравнения от двух переменных F(х,у) = 0 в окрестности некоторой точки (х0, у0) можно представить как замену рассматриваемого участка кривой на касательную, уравнение которой определяется по формуле
,
где
и
- частные производные от F
по х и у. Данное уравнение называется
уравнением в приращениях, поскольку
значения х и у здесь заменены на приращения
х
= х - х0
и у
= у - у0.
Линеаризация
ДУ происходит аналогично, отличие
состоит только в том, что необходимо
искать частные производные по производным
(
,
,
и
т.д.). Итоговое уравнение в приращениях
будет содержать приращения производных:
х’
= х’– х’0,
х”
= х”– х”0,
… , y’
= y’–y’0,
y”
= y”–y”0,
и т.д.
Пример. Линеаризация нелинейного ДУ.
3xy
- 4x2
+ 1,5
y
= 5
+ y
Данное
ДУ является нелинейным из-за наличия
произведений переменных х и у. Линеаризируем
его в окрестности точки с координатами
х0
= 1,
=
0,
=
0. Для определения недостающего начального
условия у0
подставим данные значения в ДУ:
3у0 - 4 + 0 = 0 + у0, откуда у0 = 2.
Введем в рассмотрение функцию
F = 3xy - 4x2 + 1,5x’y - 5y’ - y
и определим все ее производные при заданных начальных условиях:
=
(3у - 8х
=
3*2 - 8*1 = -2,
=
(3х + 1,5x’
- 1
=
3*1 + 1,5*0 - 1 = 2,
=
(1,5у
=
1,5*2 = 3
=
-5.
Теперь, используя полученные коэффициенты, можно записать окончательное линейное ДУ:
-5.y’ + 2.y + 3.х’ - 2.х = 0.
Линеаризация ДУ, заданного в явном виде относительно у, т.е. y = F(x) производится по формуле
,
то есть в данном случае нет необходимости искать производные по у.