
- •1. Сущность, фундаментальные принципы сау и сар.
- •2. Классификация сау и сар.
- •3.Энергетические установки как объекты автоматического регулирования
- •4.Основные схемы сар
- •7.Пропорциональные сар
- •2.4.2. Пропорционально-интегральные регуляторы
- •6.5.Программы и законы регулирования
- •6. Программы регулирования
- •5. Законы регулирования
- •8. Моделирование систем регулирования. Типовые динамические звенья.
- •9. Усилительное звено.
- •10. Апериодическое (инерционное).
- •12.Интегрирующие звенья, характеристики
- •11.Колебательные звенья, характеристики
- •13.Дифференцирующие и форсирующие звенья, характеристики.
- •14.Дифференциальное уравнение сар и их линеаризация.
- •15.Структурные схемы.
- •16.Соединения динамических звеньев.
- •17.Характеристический полином и характеристическое уравнение.
- •19.Частотные характеристики интегрирующих систем.
- •20.Частотные характеристики статических систем.
- •22.Чх систем с обратной связью
- •23. Типовые временные характеристики
- •24. Показатели качества переходной характеристики
- •25. Понятие устойчивости линеаризованных систем
- •27. Критерий Найквиста
- •28. Запасы устойчивости замкнутой системы
- •29. Передаточная функция и пространство состояний
- •30. Точность сар
- •33. Передаточная функция и ее связь с дифференциальным уравнением
- •31 Математическое описание линейных систем
- •32 Амплитудные и фазовые частотные характеристики
- •34 Классификация, принцип действия и устройство типовых регуляторов
- •35 Точность систем регулирования по задающим воздействиям
- •36 Точность систем регулирования по возмущающим воздействиям
- •37 Входные воздействия в виде ступенчатого сигнала, скачков скорости и ускорения, гармонического и стохастического сигналов
- •56. Синтез пи регуляторов
- •38 Устойчивость линейных сар
- •54. Управление неустойчивыми объектами.
- •55. Анализ пи регуляторов,
- •39 Критерий устойчивости (Гурвица)
- •40 Критерий устойчивости (Найквиста)
- •45. Методы анализа сар
- •46. Методы синтеза сар
- •59. Диаграмма Вышнеградского
- •44. Численные способы исследования сар
- •47. Основные задачи синтеза регуляторов
- •58. Метод корневого годографа
- •48. Методы повышения статической точности
- •53.Быстрый синтез систем управления методом логарифмических характеристик
- •49. Коэффициенты статических ошибок
- •50, 51 Статическое и астатическое сар.
- •50. Статическая сар. Статическая точность сар.
- •51. Астатическая сар. Динамическая точность сар.
- •52. Методы улучшения динамических параметров
- •26. Алгебраические критерии устойчивости линейных сау
- •Критерий устойчивости Гурвица. 1895 г.
20.Частотные характеристики статических систем.
Системы в которых в своей структуре не содержится последовательно присоединенного интегрирующего звена называют статическими. Примером статических систем служат последовательно соединенные звенья с передаточными функциями:
Система в структуре которой имеется последовательное соединённое интегрирующее звено называется астатической.
Если
к данному примеру прибавить
В
знаменателе появляется множитель в
компл. переменной «р». Последовательное
присоединение еще одного интегр. Звена
изменит множитель на «
».
Пример.
Передаточная функция неизменяемой части САР:
Переведем
передаточную функцию разомкнутой
системы в комплексные числа, то есть
выделим действительную и мнимую части.
– действительная часть:
– мнимая часть:
.
Амплитудно-частотная характеристика описывается выражением:
.
Рисунок 2 - Амплитудно-частотная характеристика
Фазовая частотная характеристика описывается выражением:
.
Рисунок 3 - Фазовая частотная характеристика
21. Применение изодромных устройств
Существует путь повышения порядка ас-татизма системы без заметного или недопустимого ухудшения ее запаса устойчивости. Этот путь заключается в применении изодромных устройств, например таких, как изображенные па рис. 4.19. Структурная схема системы при введении изодром-ного устройства изображена па рис. 9.4. Передаточная функция изодромного устройства может быть представлена в виде
22.Чх систем с обратной связью
Обратная связь может быть как положительной, так и отрицательной. Отрицательная обратная связь (ООС) действует в сторону уменьшения отклонений текущих значений координат объекта от их предшествующих значений, а положительная обратная связь (ПОС) действует в сторону увеличения. Следовательно, ООС позволяет строить наиболее точные САУ, так как несёт в себе информацию обо всех изменениях регулируемой величины; ПОС служит для изменения внутренних свойств отдельных звеньев САУ.
Соединение обратной связью
Если задана передаточная Функция W(S), то путём подставки S=jw получаем частотную передаточную функцию W (jw), которая является комплексным выражением т.е.
А(w) – вещественная составляющая
К(w) – мнимая составляющая.
Частотная передаточная функция может быть представлена в показательной форме
Функция М(w), представленная при изменении частоты от 0 до Ґ получило название амплитудной частотной характеристики (АЧХ).Функция j(w), представленная при изменении частоты от 0 до Ґ называется фазовой частотной характеристикой (ФЧХ). Для анализа поведения системы в большом диапазоне частот удобно в качестве аргумента частотных характеристик рассматривать не частоту ω, а ее десятичный логарифм ω 10 log.
23. Типовые временные характеристики
Для оценки динамических свойств системы и отдельных звеньев принято исследовать их реакцию на типовые входные воздействия, которые наиболее полно отражают особенности реальных возмущений. Во-первых, это позволяет сравнивать отдельные элементы между собой с точки зрения их динамических свойств. Во-вторых, зная реакцию системы на типовые воздействия, можно судить о том, как она будет вести себя при сложных изменениях входной величины.
Наиболее распространенными типовыми воздействиями являются: ступенчатое, импульсное и рамповое воздействия. Любой сигнал u(t), имеющий сложную форму, можно разложить на сумму типовых воздействий ui(t) и исследовать реакцию системы на каждую из составляющих, а затем, пользуясь принципом суперпозиции, получить результирующее изменение выходной величины y(t)суммируя полученные таким образом составляющие выходного сигнала yi(t).
Единичное ступенчатое воздействие (функция Хевисайда).
Аналитическое выражение x=1(τ). Его изображение L[1(τ)] = 1/s
Единичное импульсное воздействие (дельта-функция Дирака).
Аналитическое выражение x = δ(τ). Его изображение L[δ(τ)] = 1
Единичное рамповое воздействие (воздействие с постоянной скоростью). Аналитическое выражение x = τ·1(τ). Его изображение L[τ·1(τ)] = 1/s2
Изменения во времени выходной величины звена (системы) называют
временными характеристиками звена (системы) или кривыми отклика.