
- •Матрицы. Определители. Основные понятия.
- •Обратная матрица. Ранг матрицы.
- •Алгоритм нахождения ранга матрицы.
- •Системы линейных уравнений. Системы линейных неравенств.
- •Векторы. N – мерное линейное векторное пространство.
- •Скалярное, векторное, смешанное произведение векторов.
- •Линейные операторы и матрицы. Собственные векторы линейных операторов.
- •Квадратичные формы.
- •Кривые второго порядка на плоскости (окружность, эллипс, гипербола, парабола).
- •Пусть и - фокусы эллипса. Начало системы координат расположим на середине отрезка . Ось направим вдоль этого отрезка, ось - перпендикулярно к этому отрезку (рис. 8.2).
- •Комплексные числа. Алгебраическая форма записи.
- •Геометрическое изображение комплексных чисел. Тригонометрическая форма записи.
- •Многочлены и действия над ними.
- •Функции. Графики основных элементарных функций.
- •Способы задания функции.
- •Графики элементарных функций.
- •Линейная функция.
- •Квадратичная функция
- •Гипербола
- •Степенная функция с натуральным показателнм.
- •Функция .
- •Показательная функция
- •Логарифмическая функция
- •Предел функции.
- •Непрерывность в точке. Виды разрывов.
- •Производная, ее геометрический и физический смысл.
- •Дифференциал, его геометрический и механический смысл.
- •Теоремы о дифференцируемых функциях и их применение.
- •Выпуклость графика функции. Точки перегиба.
- •Первообразная функции. Неопределенный интеграл.
- •Понятие определенного интеграла. Геометрический смысл.
- •Комбинаторика. Понятие множества. Перестановки. Размещения. Сочетания.
- •Формула включений-исключений и ее применения к комбинаторике и теории чисел. Бином Ньютона.
- •Рекуррентные уравнения.
- •Производящие функции.
- •Булевые функции и их представление. Двоичная запись целых чисел.
- •Описание логической функции одной и двух двоичных переменных.
- •Алгоритм перевода чисел из десятичной системы счисления в двоичную.
- •Перевод чисел из двоичной системы в десятичную.
- •Теория графов. Основные понятия теории графов.
- •Сущность и условия применимости теории вероятностей. Вероятностное пространство.
- •Действия со случайными событиями.
- •Вероятность события. Аксиоматическое определение вероятности.
- •Вероятность события. Классическое определение вероятности.
- •Случайные величины и способы их описания.
- •Модели законов распределения вероятностей, наиболее употребляемые в социально-экономических приложениях.
- •Цепи Маркова и их использование в моделировании социально-экономических процессов.
Алгоритм перевода чисел из десятичной системы счисления в двоичную.
Для перевода чисел из десятичной системы счисления в двоичную используют так называемый "алгоритм замещения", состоящий из следующей последовательности действий:
Делим десятичное число А на 2. Частное Q запоминаем для следующего шага, а остаток a записываем как младший бит двоичного числа.
Если частное q не равно 0, принимаем его за новое делимое и повторяем процедуру, описанную в шаге 1. Каждый новый остаток (0 или 1) записывается в разряды двоичного числа в направлении от младшего бита к старшему.
Алгоритм продолжается до тех пор, пока в результате выполнения шагов 1 и 2 не получится частное Q = 0 и остаток a = 1.
Например, требуется перевести десятичное число 247 в двоичное. В соответствии с приведенным алгоритмом получим:
24710 : 2 = 12310 |
24710 - 24610 = 1, остаток 1 записываем в МБ двоичного числа. |
12310 : 2 = 6110 |
12310 - 12210 = 1, остаток 1 записываем в следующий после МБ разряд двоичного числа. |
6110 : 2 = 3010 |
6110 - 6010 = 1, остаток 1 записываем в старший разряд двоичного числа. |
3010 : 2 = 1510 |
3010 - 3010 = 0, остаток 0 записываем в старший разряд двоичного числа. |
1510 : 2 = 710 |
1510 - 1410 = 1, остаток 1 записываем в старший разряд двоичного числа. |
710 : 2 = 310 |
710 - 610 = 1, остаток 1 записываем в старший разряд двоичного числа. |
310 : 2 = 110 |
310 - 210 = 1, остаток 1 записываем в старший разряд двоичного числа. |
110 : 2 = 010, остаток 1 записываем в старший разряд двоичного числа. |
Таким образом, искомое двоичное число равно 111101112.
Перевод чисел из двоичной системы в десятичную.
Задача перевода чисел из двоичной системы счисления в десятичную чаще всего возникает уже при обратном преобразовании вычисленных либо обработанных компьютером значений в более понятные пользователю десятичные цифры. Алгоритм перевода двоичных чисел в десятичные достаточно прост (его иногда называют алгоритмом замещения): Для перевода двоичного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания двоичной системы счисления на соответствующие цифры в разрядах двоичного числа.
Например, требуется перевести двоичное число 10110110 в десятичное. В этом числе 8 цифр и 8 разрядов (разряды считаются, начиная с нулевого, которому соответствует младший бит). В соответствии с уже известным нам правилом представим его в виде суммы степеней с основанием 2:
101101102=(1·27)+(0·26)+(1·25)+(1·24)+(0·23)+(1·22)+(1·21)+(0·20)= 128+32+16+4+2 = 18210
Из этого примера видно, в частности, что десятичная система счисления более компактно отображает числа - 3 цифры (т.е. бита) вместо 8 цифр в двоичной системе счисления.