
- •Электрический ток в газах
- •Процессы ионизации и рекомбинации.
- •Несамостоятельный разряд
- •Самостоятельный разряд
- •Виды самостоятельного разряда
- •Статическое описание квантовой системы. Распределение Бозе — Эйнштейна и Ферми — Дирака
- •Вырожденный электронный газ в металлах. Энергия и уровень Ферми.
- •Теплоемкость кристаллов при высоких и низких температурах.
- •Закон Дюлонга-Пти
- •Колебания кристаллической решётки
- •Понятие о квантовой теории теплоемкости. Фононы
- •Электропроводность металлов. Недостаточность электронной теории.
- •Сверхпроводимость. Понятие об эффекте Джозефсона.
- •Элементы зонной теории твердых тел.
- •Металлы, диэлектрики и полупроводники по зонной теории.
- •Контакт двух металлов. Внешняя и внутренняя разность потенциалов.
- •Термоэлектрические явления.
- •Собственные и примесные полупроводники и их проводимость.
- •Контакт электронного и дырочного полупроводников (p-n-переход)
- •Полупроводниковые диоды и триоды (транзисторы)
- •Фотопроводимость полупроводников
- •Люминесценция твердых тел
Колебания кристаллической решётки
Колебания кристаллической решётки, один из основных видов внутренних движений твёрдого тела, при котором составляющие его частицы (атомы или ионы) колеблются около положений равновесия — узлов кристаллической решётки. К. к. р., например, в виде стоячих или бегущих звуковых волн возникают всякий раз, когда на кристалл действует внешняя сила, изменяющаяся со временем. Однако и в отсутствие внешних воздействий в кристалле, находящемся в тепловом равновесии с окружающей средой, устанавливается стационарное состояние колебаний, подобно тому как в газе устанавливается стационарное распределение атомов или молекул по скорости их поступательного движения.
Характер этих колебаний зависит от симметрии кристалла, числа атомов в его элементарной ячейке, типа химической связи, а также от вида и концентрации дефектов в кристаллах. Смещения и атомов в процессе колебаний тем больше, чем выше температура, но они гораздо меньше постоянной решетки вплоть до температуры плавления, когда твердое тело превращается в жидкость. Силы, которые стремятся удержать атомы в положениях равновесия, пропорциональны их относительным смещениям так, как если бы они были связаны друг с другом пружинками. Представление кристалла в виде совокупности частиц, связанных идеально упругими силами, называется гармоническим приближением.
В кристалле, состоящем из N элементарных ячеек по n атомов в каждой, существует 3nN — 6 типов простейших колебаний в виде стоячих волн, называемых нормальными (либо собственными) колебаниями, или модами. Их число равно числу степеней свободы у совокупности частиц кристалла за вычетом трёх степеней свободы, отвечающих поступательному, и трёх — вращательному движению кристалла как целого (см. Степеней свободы число). Числом 6 можно пренебречь, так как 3nN — величина ~ 1022—1023 для 1 см3 кристалла.
В процессе нормального колебания все частицы кристалла колеблются около своих положений равновесия с одной и той же постоянной частотой w по закону u ~ sinw·t подобно простому гармоническому осциллятору. В кристалле одновременно могут присутствовать все возможные нормальные колебания, причем каждое протекает так, как если бы остальных не было вовсе. Любое движение атомов в кристалле, не нарушающее его микроструктуры, может быть представлено в виде суперпозиции нормальных колебаний кристалла.
Понятие о квантовой теории теплоемкости. Фононы
Квантовая статистика устранила трудности в объяснении зависимости теплоемкости газов (в частности, двухатомных) от температуры. Согласно квантовой механике, энергия вращательного движения молекул и энергия колебаний атомов в молекуле могут принимать лишь дискретные значения. Если энергия теплового движения значительно меньше разности энергий соседних уровней энергии (kT<<E), то при столкновении молекул вращательные и колебательные степени свободы практически не возбуждаются. Поэтому при низких температурах поведение двухатомного газа подобно одноатомному.
Так как разность между соседними вращательными уровнями энергии значительно меньше, чем между колебательными, т. е. Eвращ<<Eкол, то с ростом температуры возбуждаются вначале вращательные степени свободы, в результате чего теплоемкость возрастает; при дальнейшем росте температуры возбуждаются и колебательные степени свободы и происходит дальнейший рост теплоемкости.
Функции распределения Ферми — Дирака для T=0 К и T>0 заметно различаются лишь в узкой области энергий (порядка kT). Следовательно, в процессе нагревания металла участвует лишь незначительная часть всех электронов проводимости. Этим и объясняется отсутствие заметной разницы между теплоемкостями металлов и диэлектриков, что не могло быть объяснено классической теорией.
Рассматривая
непрерывный спектр частот осцилляторов,
П. Дебай показал, что основной вклад в
среднюю энергию квантового осциллятора
вносят колебания низких частот,
соответствующих упругим волнам. Поэтому
тепловое возбуждение твердого тела
можно описать в виде упругих волн,
распространяющихся в кристалле. Согласно
корпускулярно-волновому дуализму
свойств вещества, упругим волнам в
кристалле сопоставляют
фононы,
обладающие энергией Е=
.
Фонон есть
квант энергии звуковой волны
(так как упругие волны — волны звуковые).
Фононы
являются квазичастицами
— элементарными
возбуждениями, ведущими себя подобно
микрочастицам. Аналогично тому как
квантование электромагнитного излучения
привело к представлению о фотонах,
квантование упругих волн привело к
представлению о фононах.
Квазичастицы, в частности фононы, сильно отличаются от обычных частиц (например, электронов, протонов, фотонов), так как они связаны с коллективным движением многих частиц системы. Квазичастицы не могут возникать в вакууме, они существуют только в кристалле. Импульс фонона обладает своеобразным свойством: при столкновении фононов в кристалле их импульс может дискретными порциями передаваться кристаллической решетке — он при этом не сохраняется. Поэтому в случае фононов говорят о квазиимпульсе.