
- •2. Вывести формулу площади круга, кругового сектора и сегмента.
- •1. Признаки равенства треугольников. Свойства равнобедренного треугольника.
- •1. Наложим ∆авс на ∆а1в1с1 так, чтобы точка а совместилась с точкой а1, а стороны ав и ас наложатся соответственно на лучи а1в1 и а1с1.
- •2. Возможны три случая: 1) луч вв1 проходит внутри угла авс; 2) луч вв1 совпадает с одной из сторон угла авс; 3) луч вв1 проходит вне угла авс.
- •1. Дополнительное построение. Проведем отрезок bd – биссектрису авс.
- •2. Доказать формулы длины окружности, длины дуги окружности.
- •1. Признаки параллельных прямых. Следствия. Теорема об углах с соответственно параллельными сторонами.
- •2. Доказать формулу, выражающую площадь правильного многоугольника через его сторону, радиус вписанной и описанной окружностей.
- •1. Сумма величин внутренних углов треугольника и многоугольника. Следствия.
- •1. Теорема о сумме углов треугольника.
- •1. Параллелограмм. Свойство углов и сторон параллелограмма. Признаки параллелограмма.
- •1. Прямоугольник, ромб, квадрат. Признаки прямоугольника, ромба, квадрата.
- •2). Определим площадь авс:
- •3). Определим площадь а1в1с1:
- •4). Найдем отношение площадей данных треугольников:
- •1). Подобные многоугольники можно разложить на одинаковое число подобных и одинаково расположенных треугольников.
- •3. Аналогично доказывается параллельность других прямых.
- •2. По свойству равновеликости площадей:
- •3. По свойству равносоставленности площадей:
- •1. Трапеция. Свойство средней линии трапеции.
- •2. Доказать формулу Герона.
- •1) Зная стороны треугольника, найти его высоты;
- •2) Выразить площадь треугольника через его стороны.
- •1. Взаимное расположение прямой и окружности.
- •2. Доказать формулу площади треугольника, выраженную через радиус вписанной окружности.
- •1. Доказать свойство касательной окружности. Следствие.
- •Доказать теорему о площади треугольника. Следствие.
- •1) Пусть авс – остроугольный, тогда bn ac лежит внутри треугольника.
- •2) Пусть авс – тупоугольный с тупым углом с и bn ac лежит внутри треугольника.
- •1) Если дуги равны, то стягивающие их хорды равны и одинаково удалены от центра;
- •2) Если две дуги, меньшие полуокружности, не равны, то большая из них стягивается большей хордой и из обеих хорд большая расположена ближе к центру.
- •Угол, вершина которого лежит внутри круга, измеряется полусуммой двух дуг, из которых одна заключена между его сторонами, а другая - между продолжениями сторон.
- •Угол, вершина которого лежит вне круга и стороны пересекаются с окружностью, измеряется полуразностью двух дуг, заключенных между его сторонами.
- •2. Доказать теорему о площади параллелограмма.
- •1. Доказать теоремы, выражающие свойства хорд и диаметров окружностей.
- •2. Рассмотрим треугольники сов и eof.
- •2. Рассмотрим треугольники aов и eod.
- •2. Доказать теорему о скалярном произведении двух векторов и теорему косинусов с помощью векторов.
- •1. Доказать теоремы о вписанной и описанной около треугольника окружностях.
- •1. Пусть серединные перпендикуляры kk1 и nn1 пересекаются в точке о. Соединим точку о с вершинами треугольника авс.
- •1. Пусть биссектрисы аа1 и вв1 пересекаются в точке о. Построим из точки о перпендикуляры ok, on и op к сторонам ав, вс и ас треугольника.
- •2. Доказать теорему синусов. Следствие.
- •1). Проведем из точки в перпендикуляр к стороне ас.
- •1. Доказать теорему о четырехугольнике, вписанном в окружность, и теорему, ей обратную.
- •1) Точка c находится вне окружности,
- •2) Она лежит внутри окружности. При первом предположении и усло-
- •2. Гомотетия. Доказать, что гомотетия есть преобразование подобия. Подобие фигур.
- •1. Гомотетия переводит прямые в прямые, полупрямые в полупрямые, отрезки в отрезки.
- •2. Гомотетия сохраняет величину угла..
- •3. Гомотетия переводит треугольник в треугольник. Стороны этих треугольников пропорциональны, а соответственные углы равны.
- •Д оказать теорему о четырехугольнике, в который вписана окружность. Доказать теорему о сумме катетов прямоугольного треугольника.
- •1) Cd не пересекает окружность,
- •2) Cd пересекает окружность.
- •1) Рассмотрим прямоугольник со сторонами a и b и площадью s.
- •1). Пусть т – прямоугольный треугольник с катетами a и b и гипотенузой с.
- •2. Доказать теорему о высоте прямоугольного треугольника, проведенной из вершины прямого угла.
- •1. Доказать теорему Пифагора и ей обратную.
- •1). Пусть т – прямоугольный треугольник с катетами a и b и гипотенузой с.
- •4). Докажем, что четырехугольник defg является квадратом.
- •5) По принципу равносоставленности
1. Признаки равенства треугольников. Свойства равнобедренного треугольника.
Т
еорема
1 (первый признак равенства треугольников
– СУС).
Если две стороны и угол между ними
одного треугольника соответственно
равны двум сторонам и углу между
ними другого треугольника, то такие
треугольники равны.
Дано: ∆АВС; ∆А1В1С1; АВ = А1В1; A = A1; АС = А1С1.
Доказать: ∆АВС = ∆А1В1С1.
Доказательство:
1. Наложим ∆авс на ∆а1в1с1 так, чтобы точка а совместилась с точкой а1, а стороны ав и ас наложатся соответственно на лучи а1в1 и а1с1.
2. Поскольку АВ = А1В1, точки В и В1 совпадут, а сторона АВ совместится со стороной А1В1.
3. Поскольку АС = А1С1, точки С и С1 совпадут, а сторона АС совместится со стороной А1С1.
4. Согласно аксиоме существования прямых стороны ВС и В1С1 также совпадут. ∆АВС = ∆А1В1С1.
Теорема 2 (второй признак равенства треугольников – УСУ). Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Дано: ∆АВС; ∆А1В1С1; A = A1; АС = А1С1; С = С1.
Доказать: ∆АВС = ∆А1В1С1.
Доказательство:
1. Наложим ∆АВС на ∆А1В1С1 так, чтобы точка А совместилась с точкой А1, сторона АС – с равной ей стороной А1С1, а вершины В и В1 оказались по одну сторону от прямой А1С1.
2. Поскольку A = A1 и С = С1, то сторона АВ наложится на луч А1В1, а сторона СВ наложится на луч С1В1. Вершина В – общая точка сторон АВ и СВ – окажется лежащей на лучах А1В1 и С1В1, а следовательно, совместится с общей точкой лучей А1В1 и С1В1, т. е. с точкой В1. Значит, совместятся стороны АВ и А1В1, а также СВ и С1В1. Значит, ∆АВС = ∆А1В1С1.
Теорема 3 (третий признак равенства треугольников – ССС). Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Д
ано:
∆АВС; ∆А1В1С1;
АВ = А1В1;
ВС
= В1С1;
АС = А1С1.
Доказать: ∆АВС = ∆А1В1С1.
Доказательство:
1. Дополнительное построение. Приложим ∆АВС к ∆А1В1С1 так, чтобы вершина А совместилась с вершиной А1 и вершина С совместилась с вершиной С1, а вершина В и вершина В1 оказались по разные стороны от отрезка АС.
2. Возможны три случая: 1) луч вв1 проходит внутри угла авс; 2) луч вв1 совпадает с одной из сторон угла авс; 3) луч вв1 проходит вне угла авс.
3. Рассмотрим первый случай. Так как АВ = А1В1, то ∆АВВ1 – равнобедренный
АВВ1 = АВ1В (углы при основании). Так как СВ = СВ1, то ∆СВВ1 – равнобедренный СВВ1 = СВ1В (углы при основании).
4. Рассмотрим второй случай. Пусть точка СВВ1. Так как АВ = А1В1, то ∆АВВ1 – равнобедренный АВВ1 = АВ1В (углы при основании). Так как СВ = СВ1, то в ∆АВВ1 АС – медиана.
3. Рассмотрим третий случай. Так как АВ = А1В1, то ∆АВВ1 – равнобедренный
АВВ1 = АВ1В (углы при основании). Так как СВ = СВ1, то ∆СВВ1 – равнобедренный СВВ1 = СВ1В (углы при основании).
Определение 1. Равнобедренным называется треугольник, у которого две стороны равны.
Равные стороны равнобедренного треугольника называются боковыми, а третья сторона – основанием. Общая вершина двух равных (боковых) сторон называется вершиной равнобедренного треугольника.
О
пределение
2.
Биссектрисой
треугольника называется отрезок,
делящий внутренний угол треугольника
пополам и проведенный из вершины до
пересечения с противоположной
стороной. АК – биссектриса угла А.
Определение 3. Медианой треугольника называется отрезок, соединяющий вершину треугольника с серединой противоположной стороны. CM – медиана, проведенная к стороне АВ, при этом АМ = МВ.
Определение 4. Высотой треугольника называется отрезок перпендикуляра, опущенный из вершины треугольника на противоположную сторону. ВР – высота, опущенная на сторону АС.
Свойства равнобедренного треугольника.
Т
еорема
1.
Углы при основании равнобедренного
треугольника равны.
Дано: ∆АВС; АВ = ВС. Доказать: А = С.
Доказательство: