
- •Глава 1. Основные понятия 14
- •Глава 2. Списки 30
- •Глава 3. Стеки и очереди 59
- •Глава 4. Массивы 74
- •Глава 5. Рекурсия 86
- •Глава 6. Деревья 121
- •Глава 7. Сбалансированные деревья 153
- •Глава 8. Деревья решений 180
- •Глава 9. Сортировка 213
- •Введение
- •Целевая аудитория
- •Глава 1. Основные понятия
- •Что такое алгоритмы?
- •Анализ скорости выполнения алгоритмов
- •Пространство — время
- •Оценка с точностью до порядка
- •Поиск сложных частей алгоритма
- •Сложность рекурсивных алгоритмов
- •Многократная рекурсия
- •Косвенная рекурсия
- •Требования рекурсивных алгоритмов к объему памяти
- •Наихудший и усредненный случай
- •Часто встречающиеся функции оценки порядка сложности
- •Логарифмы
- •Реальные условия — насколько быстро?
- •Обращение к файлу подкачки
- •Псевдоуказатели, ссылки на объекты и коллекции
- •Коллекции
- •Вопросы производительности
- •Глава 2. Списки
- •Знакомство со списками
- •Простые списки
- •Коллекции
- •Список переменного размера
- •Класс SimpleList
- •Неупорядоченные списки
- •Связные списки
- •Добавление элементов к связному списку
- •Удаление элементов из связного списка
- •Уничтожение связного списка
- •Сигнальные метки
- •Инкапсуляция связных списков
- •Доступ к ячейкам
- •Разновидности связных списков
- •Циклические связные списки
- •Проблема циклических ссылок
- •Двусвязные списки
- •Другие связные структуры
- •Псевдоуказатели
- •Глава 3. Стеки и очереди
- •Множественные стеки
- •Очереди
- •Циклические очереди
- •Очереди на основе связных списков
- •Применение коллекций в качестве очередей
- •Приоритетные очереди
- •Многопоточные очереди
- •Модель очереди
- •Глава 4. Массивы
- •Треугольные массивы
- •Диагональные элементы
- •Нерегулярные массивы
- •Прямая звезда
- •Нерегулярные связные списки
- •Разреженные массивы
- •Индексирование массива
- •Очень разреженные массивы
- •Глава 5. Рекурсия
- •Что такое рекурсия?
- •Рекурсивное вычисление факториалов
- •Анализ времени выполнения программы
- •Рекурсивное вычисление наибольшего общего делителя
- •Анализ времени выполнения программы
- •Рекурсивное вычисление чисел Фибоначчи
- •Анализ времени выполнения программы
- •Рекурсивное построение кривых Гильберта
- •Анализ времени выполнения программы
- •Рекурсивное построение кривых Серпинского
- •Анализ времени выполнения программы
- •Опасности рекурсии
- •Бесконечная рекурсия
- •Потери памяти
- •Необоснованное применение рекурсии
- •Когда нужно использовать рекурсию
- •Хвостовая рекурсия
- •Нерекурсивное вычисление чисел Фибоначчи
- •Устранение рекурсии в общем случае
- •Нерекурсивное построение кривых Гильберта
- •Нерекурсивное построение кривых Серпинского
- •Глава 6. Деревья
- •Определения
- •Представления деревьев
- •Полные узлы
- •Списки потомков
- •Представление нумерацией связей
- •Полные деревья
- •Обход дерева
- •Упорядоченные деревья
- •Добавление элементов
- •Удаление элементов
- •Обход упорядоченных деревьев
- •Деревья со ссылками
- •Работа с деревьями со ссылками
- •Квадродеревья
- •Изменение max_per_node
- •Использование псевдоуказателей в квадродеревьях
- •Восьмеричные деревья
- •Глава 7. Сбалансированные деревья
- •Сбалансированность дерева
- •Авл‑деревья
- •Вращения авл‑деревьев
- •Правое вращение
- •Левое вращение
- •Вращение влево‑вправо
- •Вращение вправо‑влево
- •Вставка узлов на языке Visual Basic
- •Удаление узла из авл‑дерева
- •Левое вращение
- •Вращение вправо‑влево
- •Другие вращения
- •Реализация удаления узлов на языке Visual Basic
- •Б‑деревья
- •Производительность б‑деревьев
- •Вставка элементов в б‑дерево
- •Удаление элементов из б‑дерева
- •Разновидности б‑деревьев
- •Нисходящие б‑деревья
- •Улучшение производительности б‑деревьев
- •Балансировка для устранения разбиения блоков
- •Добавление свободного пространства
- •Вопросы, связанные с обращением к диску
- •Псевдоуказатели
- •Выбор размера блока
- •Кэширование узлов
- •Глава 8. Деревья решений
- •Поиск в деревьях игры
- •Минимаксный поиск
- •Улучшение поиска в дереве игры
- •Предварительное вычисление начальных ходов
- •Определение важных позиций
- •Эвристики
- •Поиск в других деревьях решений
- •Метод ветвей и границ
- •Эвристики
- •Восхождение на холм
- •Метод наименьшей стоимости
- •Сбалансированная прибыль
- •Случайный поиск
- •Последовательное приближение
- •Момент остановки
- •Локальные оптимумы
- •Алгоритм «отжига»
- •Сравнение эвристик
- •Другие сложные задачи
- •Задача о выполнимости
- •Задача о разбиении
- •Задача поиска Гамильтонова пути
- •Задача коммивояжера
- •Задача о пожарных депо
- •Краткая характеристика сложных задач
- •Глава 9. Сортировка
- •Общие соображения
- •Объединение и сжатие ключей
- •Примеры программ
- •Сортировка выбором
- •Рандомизация
- •Сортировка вставкой
- •Вставка в связных списках
- •Пузырьковая сортировка
- •Быстрая сортировка
- •Сортировка слиянием
- •Пирамидальная сортировка
- •Пирамиды
- •Приоритетные очереди
- •Анализ пирамид
- •Алгоритм пирамидальной сортировки
- •Сортировка подсчетом
- •Блочная сортировка
- •Блочная сортировка с применением связного списка
- •Блочная сортировка на основе массива
- •Глава 10. Поиск
- •Примеры программ
- •Поиск методом полного перебора
- •Поиск в упорядоченных списках
- •Поиск в связных списках
- •Двоичный поиск
- •Интерполяционный поиск
- •Строковые данные
- •Следящий поиск
- •Интерполяционный следящий поиск
- •Глава 11. Хеширование
- •Связывание
- •Преимущества и недостатки связывания
- •Хранение хеш‑таблиц на диске
- •Связывание блоков
- •Удаление элементов
- •Преимущества и недостатки применения блоков
- •Открытая адресация
- •Линейная проверка
- •Первичная кластеризация
- •Упорядоченная линейная проверка
- •Квадратичная проверка
- •Псевдослучайная проверка
- •Удаление элементов
- •Рехеширование
- •Изменение размера хеш‑таблиц
- •Глава 12. Сетевые алгоритмы
- •Определения
- •Представления сети
- •Оперирование узлами и связями
- •Обходы сети
- •Наименьшие остовные деревья
- •Кратчайший маршрут
- •Установка меток
- •Варианты метода установки меток
- •Коррекция меток
- •Варианты метода коррекции меток
- •Другие задачи поиска кратчайшего маршрута
- •Двухточечный кратчайший маршрут
- •Вычисление кратчайшего маршрута для всех пар
- •Штрафы за повороты
- •Небольшое число штрафов за повороты
- •Большое число штрафов за повороты
- •Применения метода поиска кратчайшего маршрута
- •Разбиение на районы
- •Составление плана работ с использованием метода критического пути
- •Планирование коллективной работы
- •Максимальный поток
- •Приложения максимального потока
- •Непересекающиеся пути
- •Распределение работы
- •Глава 13. Объектно‑ориентированные методы
- •Преимущества ооп
- •Инкапсуляция
- •Обеспечение инкапсуляции
- •Полиморфизм
- •Зарезервированное слово Implements
- •Наследование и повторное использование
- •Парадигмы ооп
- •Управляющие объекты
- •Контролирующий объект
- •Итератор
- •Дружественный класс
- •Интерфейс
- •Порождающий объект
- •Единственный объект
- •Преобразование в последовательную форму
- •Парадигма Модель/Вид/Контроллер.
- •Контроллеры
- •Виды/Контроллеры
- •Требования к аппаратному обеспечению
- •Выполнение программ примеров
Блочная сортировка на основе массива
Блочную сортировку также можно реализовать в массиве, используя идеи подобные тем, которые используются при сортировке подсчетом. При каждом вызове алгоритма, вначале подсчитывается число элементов, которые относятся к каждому блоку. Потом на основе этих данных рассчитываются смещения во временном массиве, которые затем используются для правильного расположения элементов в массиве. В конце концов, блоки рекурсивно сортируются, и отсортированные данные перемещаются обратно в исходный массив.
Public Sub ArrayBucketSort(List() As Long, Scratch() As Long, _
min As Long, max As Long, NumBuckets As Long)
Dim counts() As Long
Dim offsets() As Long
Dim i As Long
Dim Value As Long
Dim min_value As Long
Dim max_value As Long
Dim value_scale As Double
Dim bucket_num As Long
Dim next_spot As Long
Dim num_in_bucket As Long
' Если в списке не более чем CutOff элементов,
' закончить сортировку процедурой SelectionSort.
If max - min + 1 < CutOff Then
Selectionsort List(), min, max
Exit Sub
End If
' Найти значения min и max.
min_value = List(min)
max_value = min_value
For i = min + 1 To max
Value = List(i)
If min_value > Value Then min_value = Value
If max_value < Value Then max_value = Value
Next i
' Если min_value = max_value, значит, есть единственное
' значение, и список отсортирован.
If min_value = max_value Then Exit Sub
' Создать пустой массив с отсчетами блоков.
ReDim counts(l To NumBuckets)
value_scale = _
CDbl (NumBuckets - 1) / _
CDbl (max_value - min_value)
' Создать отсчеты блоков.
For i = min To max
If List(i) = max_value Then
bucket_num = NumBuckets
Else
bucket_num = _
Int((List(i) - min_value) * _
value_scale) + 1
End If
counts(bucket_num) = counts(bucket_num) + 1
Next i
' Преобразовать отсчеты в смещение в массиве.
ReDim offsets(l To NumBuckets)
next_spot = min
For i = 1 To NumBuckets
offsets(i) = next_spot
next_spot = next_spot + counts(i)
Next i
' Разместить значения в соответствующих блоках.
For i = min To max
If List(i) = max_value Then
bucket_num = NumBuckets
Else
bucket_num = _
Int((List(i) - min_value) * _
value_scale) + 1
End If
Scratch (offsets (bucket_num)) = List(i)
offsets(bucket_num) = offsets(bucket_num) + 1
Next i
' Рекурсивная сортировка блоков, содержащих
' более одного элемента.
next_spot = min
For i = 1 To NumBuckets
If counts(i) > 1 Then ArrayBucketSort _
Scratch(), List(), next_spot, _
next_spot + counts(i) - 1, counts(i)
next_spot = next_spot + counts(i)
Next i
' Скопировать временный массив назад в исходный список.
For i = min To max
List(i) = Scratch(i)
Next i
End Sub
Из‑за накладных расходов, которые требуются для работы со связными списками, эта версия блочной сортировки работает намного быстрее, чем версия с использованием связных списков. Тем не менее, используя методы работы с псевдоуказателями, описанные во 2 главе, можно улучшить производительность версии с использованием связных списков, так что обе версии станут практически эквивалентными по скорости.
Новую версию также можно сделать еще быстрее, используя функцию API MemCopy для копирования элементов из временного массива обратно в исходный список. Эта усовершенствованную версию алгоритма демонстрирует программа FastSort.
===========259-261
Резюме
В таб. 9.4 приведены преимущества и недостатки алгоритмов сортировки, описанных в этой главе, из которых можно вывести несколько правил, которые могут помочь вам выбрать алгоритм сортировки.
Эти правила, изложенные в следующем списке, и информация в табл. 9.4 может помочь вам подобрать алгоритм, который обеспечит максимальную производительность:
если вам нужно быстро реализовать алгоритм сортировки, используйте быструю сортировку, а затем при необходимости поменяйте алгоритм;
если более 99 процентов списка уже отсортировано, используйте пузырьковую сортировку;
если список очень мал (100 или менее элементов), используйте сортировку выбором;
если значения находятся в связном списке, используйте блочную сортировку на основе связного списка;
если элементы в списке — целые числа, разброс значений которых невелик (до нескольких тысяч), используйте сортировку подсчетом;
если значения лежат в широком диапазоне и не являются целыми числами, используйте блочную сортировку на основе массива;
если вы не можете тратить дополнительную память, которая требуется для блочной сортировки, используйте быструю сортировка
Если вы знаете структуру данных и различные алгоритмы сортировки, вы можете выбрать алгоритм, наиболее подходящий для ваших нужд.
@Таблица 9.4. Преимущества и недостатки алгоритмов сортировки
=========263