
- •Глава 1. Основные понятия 14
- •Глава 2. Списки 30
- •Глава 3. Стеки и очереди 59
- •Глава 4. Массивы 74
- •Глава 5. Рекурсия 86
- •Глава 6. Деревья 121
- •Глава 7. Сбалансированные деревья 153
- •Глава 8. Деревья решений 180
- •Глава 9. Сортировка 213
- •Введение
- •Целевая аудитория
- •Глава 1. Основные понятия
- •Что такое алгоритмы?
- •Анализ скорости выполнения алгоритмов
- •Пространство — время
- •Оценка с точностью до порядка
- •Поиск сложных частей алгоритма
- •Сложность рекурсивных алгоритмов
- •Многократная рекурсия
- •Косвенная рекурсия
- •Требования рекурсивных алгоритмов к объему памяти
- •Наихудший и усредненный случай
- •Часто встречающиеся функции оценки порядка сложности
- •Логарифмы
- •Реальные условия — насколько быстро?
- •Обращение к файлу подкачки
- •Псевдоуказатели, ссылки на объекты и коллекции
- •Коллекции
- •Вопросы производительности
- •Глава 2. Списки
- •Знакомство со списками
- •Простые списки
- •Коллекции
- •Список переменного размера
- •Класс SimpleList
- •Неупорядоченные списки
- •Связные списки
- •Добавление элементов к связному списку
- •Удаление элементов из связного списка
- •Уничтожение связного списка
- •Сигнальные метки
- •Инкапсуляция связных списков
- •Доступ к ячейкам
- •Разновидности связных списков
- •Циклические связные списки
- •Проблема циклических ссылок
- •Двусвязные списки
- •Другие связные структуры
- •Псевдоуказатели
- •Глава 3. Стеки и очереди
- •Множественные стеки
- •Очереди
- •Циклические очереди
- •Очереди на основе связных списков
- •Применение коллекций в качестве очередей
- •Приоритетные очереди
- •Многопоточные очереди
- •Модель очереди
- •Глава 4. Массивы
- •Треугольные массивы
- •Диагональные элементы
- •Нерегулярные массивы
- •Прямая звезда
- •Нерегулярные связные списки
- •Разреженные массивы
- •Индексирование массива
- •Очень разреженные массивы
- •Глава 5. Рекурсия
- •Что такое рекурсия?
- •Рекурсивное вычисление факториалов
- •Анализ времени выполнения программы
- •Рекурсивное вычисление наибольшего общего делителя
- •Анализ времени выполнения программы
- •Рекурсивное вычисление чисел Фибоначчи
- •Анализ времени выполнения программы
- •Рекурсивное построение кривых Гильберта
- •Анализ времени выполнения программы
- •Рекурсивное построение кривых Серпинского
- •Анализ времени выполнения программы
- •Опасности рекурсии
- •Бесконечная рекурсия
- •Потери памяти
- •Необоснованное применение рекурсии
- •Когда нужно использовать рекурсию
- •Хвостовая рекурсия
- •Нерекурсивное вычисление чисел Фибоначчи
- •Устранение рекурсии в общем случае
- •Нерекурсивное построение кривых Гильберта
- •Нерекурсивное построение кривых Серпинского
- •Глава 6. Деревья
- •Определения
- •Представления деревьев
- •Полные узлы
- •Списки потомков
- •Представление нумерацией связей
- •Полные деревья
- •Обход дерева
- •Упорядоченные деревья
- •Добавление элементов
- •Удаление элементов
- •Обход упорядоченных деревьев
- •Деревья со ссылками
- •Работа с деревьями со ссылками
- •Квадродеревья
- •Изменение max_per_node
- •Использование псевдоуказателей в квадродеревьях
- •Восьмеричные деревья
- •Глава 7. Сбалансированные деревья
- •Сбалансированность дерева
- •Авл‑деревья
- •Вращения авл‑деревьев
- •Правое вращение
- •Левое вращение
- •Вращение влево‑вправо
- •Вращение вправо‑влево
- •Вставка узлов на языке Visual Basic
- •Удаление узла из авл‑дерева
- •Левое вращение
- •Вращение вправо‑влево
- •Другие вращения
- •Реализация удаления узлов на языке Visual Basic
- •Б‑деревья
- •Производительность б‑деревьев
- •Вставка элементов в б‑дерево
- •Удаление элементов из б‑дерева
- •Разновидности б‑деревьев
- •Нисходящие б‑деревья
- •Улучшение производительности б‑деревьев
- •Балансировка для устранения разбиения блоков
- •Добавление свободного пространства
- •Вопросы, связанные с обращением к диску
- •Псевдоуказатели
- •Выбор размера блока
- •Кэширование узлов
- •Глава 8. Деревья решений
- •Поиск в деревьях игры
- •Минимаксный поиск
- •Улучшение поиска в дереве игры
- •Предварительное вычисление начальных ходов
- •Определение важных позиций
- •Эвристики
- •Поиск в других деревьях решений
- •Метод ветвей и границ
- •Эвристики
- •Восхождение на холм
- •Метод наименьшей стоимости
- •Сбалансированная прибыль
- •Случайный поиск
- •Последовательное приближение
- •Момент остановки
- •Локальные оптимумы
- •Алгоритм «отжига»
- •Сравнение эвристик
- •Другие сложные задачи
- •Задача о выполнимости
- •Задача о разбиении
- •Задача поиска Гамильтонова пути
- •Задача коммивояжера
- •Задача о пожарных депо
- •Краткая характеристика сложных задач
- •Глава 9. Сортировка
- •Общие соображения
- •Объединение и сжатие ключей
- •Примеры программ
- •Сортировка выбором
- •Рандомизация
- •Сортировка вставкой
- •Вставка в связных списках
- •Пузырьковая сортировка
- •Быстрая сортировка
- •Сортировка слиянием
- •Пирамидальная сортировка
- •Пирамиды
- •Приоритетные очереди
- •Анализ пирамид
- •Алгоритм пирамидальной сортировки
- •Сортировка подсчетом
- •Блочная сортировка
- •Блочная сортировка с применением связного списка
- •Блочная сортировка на основе массива
- •Глава 10. Поиск
- •Примеры программ
- •Поиск методом полного перебора
- •Поиск в упорядоченных списках
- •Поиск в связных списках
- •Двоичный поиск
- •Интерполяционный поиск
- •Строковые данные
- •Следящий поиск
- •Интерполяционный следящий поиск
- •Глава 11. Хеширование
- •Связывание
- •Преимущества и недостатки связывания
- •Хранение хеш‑таблиц на диске
- •Связывание блоков
- •Удаление элементов
- •Преимущества и недостатки применения блоков
- •Открытая адресация
- •Линейная проверка
- •Первичная кластеризация
- •Упорядоченная линейная проверка
- •Квадратичная проверка
- •Псевдослучайная проверка
- •Удаление элементов
- •Рехеширование
- •Изменение размера хеш‑таблиц
- •Глава 12. Сетевые алгоритмы
- •Определения
- •Представления сети
- •Оперирование узлами и связями
- •Обходы сети
- •Наименьшие остовные деревья
- •Кратчайший маршрут
- •Установка меток
- •Варианты метода установки меток
- •Коррекция меток
- •Варианты метода коррекции меток
- •Другие задачи поиска кратчайшего маршрута
- •Двухточечный кратчайший маршрут
- •Вычисление кратчайшего маршрута для всех пар
- •Штрафы за повороты
- •Небольшое число штрафов за повороты
- •Большое число штрафов за повороты
- •Применения метода поиска кратчайшего маршрута
- •Разбиение на районы
- •Составление плана работ с использованием метода критического пути
- •Планирование коллективной работы
- •Максимальный поток
- •Приложения максимального потока
- •Непересекающиеся пути
- •Распределение работы
- •Глава 13. Объектно‑ориентированные методы
- •Преимущества ооп
- •Инкапсуляция
- •Обеспечение инкапсуляции
- •Полиморфизм
- •Зарезервированное слово Implements
- •Наследование и повторное использование
- •Парадигмы ооп
- •Управляющие объекты
- •Контролирующий объект
- •Итератор
- •Дружественный класс
- •Интерфейс
- •Порождающий объект
- •Единственный объект
- •Преобразование в последовательную форму
- •Парадигма Модель/Вид/Контроллер.
- •Контроллеры
- •Виды/Контроллеры
- •Требования к аппаратному обеспечению
- •Выполнение программ примеров
Поиск сложных частей алгоритма
Обычно наиболее сложным является выполнение циклов и вызовов процедур. В предыдущем примере, весь алгоритм заключен в двух циклах.
============4
Если процедура вызывает другую процедуру, необходимо учитывать сложность вызываемой процедуры. Если в ней выполняется фиксированное число инструкций, например, осуществляется вывод на печать, то при оценке порядка сложности ее можно не учитывать. С другой стороны, если в вызываемой процедуре выполняется O(N) шагов, она может вносить значительный вклад в сложность алгоритма. Если вызов процедуры осуществляется внутри цикла, этот вклад может быть еще больше.
Приведем в качестве примера программу, содержащую медленную процедуру Slow со сложностью порядка O(N3) и быструю процедуру Fast со сложностью порядка O(N2). Сложность всей программы будет зависеть от соотношения между этими двумя процедурами.
Если процедура Slow вызывается в каждом цикле процедуры Fast, порядки сложности процедур перемножаются. В этом случае сложность алгоритма равна произведению O(N2) и O(N3) или O(N3*N2)=O(N5). Приведем иллюстрирующий этот случай фрагмент кода:
Sub Slow()
Dim I As Integer
Dim J As Integer
Dim K As Integer
For I = 1 To N
For J = 1 To N
For K = 1 To N
' Выполнить какие‑либо действия.
Next K
Next J
Next I
End Sub
Sub Fast()
Dim I As Integer
Dim J As Integer
Dim K As Integer
For I = 1 To N
For J = 1 To N
Slow ' Вызов процедуры Slow.
Next J
Next I
End Sub
Sub MainProgram()
Fast
End Sub
С другой стороны, если процедуры независимо вызываются из основной программы, их вычислительная сложность суммируется. В этом случае полная сложность будет равна O(N3)+O(N2)=O(N3). Такую сложность, например, будет иметь следующий фрагмент кода:
Sub Slow()
Dim I As Integer
Dim J As Integer
Dim K As Integer
For I = 1 To N
For J = 1 To N
For K = 1 To N
' Выполнить какие‑либо действия.
Next K
Next J
Next I
End Sub
Sub Fast()
Dim I As Integer
Dim J As Integer
For I = 1 To N
For J = 1 To N
' Выполнить какие‑либо действия.
Next J
Next I
End Sub
Sub MainProgram()
Slow
Fast
End Sub
==============5
Сложность рекурсивных алгоритмов
Рекурсивными процедурами (recursive procedure) называются процедуры, вызывающие сами себя. Во многих рекурсивных алгоритмах именно степень вложенности рекурсии определяет сложность алгоритма, при этом не всегда легко оценить порядок сложности. Рекурсивная процедура может выглядеть простой, но при этом вносить большой вклад в сложность программы, многократно вызывая саму себя.
Следующий фрагмент кода содержит подпрограмму всего из двух операторов. Тем не менее, для заданного N подпрограмма выполняется N раз, таким образом, вычислительная сложность фрагмента порядка O(N).
Sub CountDown(N As Integer)
If N <= 0 Then Exit Sub
CountDown N - 1
End Sub
===========6
Многократная рекурсия
Рекурсивный алгоритм, вызывающий себя несколько раз, является примером многократной рекурсии (multiple recursion). Процедуры с множественной рекурсией сложнее анализировать, чем просто рекурсивные алгоритмы, и они могут давать больший вклад в общую сложность алгоритма.
Нижеприведенная подпрограмма похожа на предыдущую подпрограмму CountDown, только она вызывает саму себя дважды:
Sub DoubleCountDown(N As Integer)
If N <= 0 Then Exit Sub
DoubleCountDown N - 1
DoubleCountDown N - 1
End Sub
Можно было бы предположить, что время выполнения этой процедуры будет в два раза больше, чем для подпрограммы CountDown, и оценить ее сложность порядка 2*O(N)=O(N). На самом деле ситуация немного сложнее.
Если T(N) — число раз, которое выполняется процедура DoubleCountDown с параметром N, то легко заметить, что T(0)=1. Если вызвать процедуру с параметром N равным 0, то она просто закончит свою работу после первого шага.
Для больших значений N процедура вызывает себя дважды с параметром, равным N-1, выполняясь 1+2*T(N-1) раз. В табл. 1.1 приведены некоторые значения функции T(0)=1 и T(N)=1+2*T(N-1). Если обратить внимание на эти значения, можно увидеть, что T(N)=2(N+1)-1, что дает оценку сложности процедуры порядка O(2N). Хотя процедуры CountDown и DoubleCountDown и похожи, вторая процедура требует выполнения гораздо большего числа шагов.
@Таблица 1.1. Значения функции времени выполнения для подпрограммы DoubleCountDown