- •1. Элементы прикладной механики
- •1.1 Статические, кинематические и динамические основы конструирования технических систем
- •1.1.1 Основные понятия статики [1, с.9-17]
- •1.1.1.1 Силы
- •1.1.1.2 Связи и их реакции
- •1.1.1.3 Сложение сил [1, с.18-31]
- •1.1.1.4 Момент силы относительно точки [1, с.31-33]
- •1.1.1.5 Пара сил. Момент пары [1, с.33-37]
- •1.1.1.6 Приведение системы сил к центру. Условия равновесия
- •1.1.1.7 Трение [1, с.64-72]
- •1.1.2 Основные сведения из кинематики
- •1.1.2.1 Способы задания движения точки
- •1.1.2.2 Скорость и ускорение точки
- •1.1.2.3 Решение задач кинематики точки
- •1.1.3 Основные сведения из динамики
- •1.1.3.1 Законы динамики [1, с.181-184]
- •1.1.3.2 Задачи динамики
- •1.1.3.3 Основные виды сил, рассматриваемые в задачах динамики
- •1.1.3.4 Общие теоремы динамики [1, с. 201-219]
- •1.1.3.5 Введение в динамику системы
- •1.2 Основные понятия о важнейших свойствах конструкций технических систем: прочности, жесткости и устойчивости
- •1.2.1 Реальный объект и расчетная схема
- •1.2.2 Силы внешние и внутренние
- •1.2.3 Напряжения
- •1.2.4 Перемещения и деформации
- •1.2.5 Закон Гука
- •1.2.6 Растяжение и сжатие
- •1.2.7 Статически неопределимые системы при растяжении и сжатии
- •1.2.8 Напряженное и деформированное состояния при растяжении и сжатии
- •1.2.9 Испытание материалов на растяжение и сжатие
- •1.2.10 Влияние температуры и фактора времени на механические характеристики материала
- •1.2.11 Коэффициент запаса
- •1.2.12. Кручение
- •1.2.12.1 Чистый сдвиг
- •1.2.12.2 Кручение стержня с круглым поперечным сечением
- •1.2.13. Геометрические характеристики плоских поперечных сечений стержня
- •1.2.13.1 Статические моменты
- •1.2.13.2 Моменты инерции сечения
- •1.2.14. Изгиб
- •1.2.14.1 Напряжения при чистом изгибе
- •1.2.14.2 Напряжения при поперечном изгибе
- •1.2.15. Прочность при циклически изменяющихся напряжениях
- •1.2.16. Понятие об устойчивости
- •1.2.17. Динамическое нагружение
- •1.3 Элементы теории механизмов и деталей машин
- •1.3.1 Основные определения
- •1.3.2 Классификация кинематических пар
- •1.3.3 Виды механизмов и их структурные схемы
- •1.3.4 Структурный анализ и синтез механизмов. Влияние избыточных связей на работоспособность и надежность машин
- •1.3.5 Кинематические характеристики механизмов
- •1.3.6. Силы, действующие в механизмах и способы их определения
- •1.3.7. Типовые детали машин
- •1.3.7.1. Валы и оси
- •1.3.7.2. Опоры скольжения
- •1.3.7.3. Опоры качения
- •1.3.7.4. Пружины и рессоры
- •1.3.7.5. Предохранители от перегрузки
- •1.3.7.6. Станины, плиты, коробки и другие корпусные детали
- •1.3.8. Соединения деталей машин
- •1.3.8.1. Резьбовые соединения
- •1.3.8.2. Заклепочные соединения
- •1.3.8.3. Сварные соединения
- •1.3.8.4. Соединения пайкой и склеиванием
- •1.3.8.5. Клеммовые соединения
- •1.3.8.6. Шпоночные, зубчатые (шлицевые) и профильные соединения
- •1.3.8.7. Соединения деталей посредством посадок с гарантированным натягом (прессовые соединения)
- •1.3.9. Механические передачи
- •1.3.9.1. Ременные передачи
- •1.3.9.2. Фрикционные передачи
- •1.3.9.3. Зубчатые передачи
- •1.3.9.4. Червячные передачи
- •1.3.9.5. Цепные передачи
- •1.3.9.6. Передача винт-гайка
- •1.3.10. Муфты
- •Литература к теме 1
1.2.1 Реальный объект и расчетная схема
Исследование реального объекта начинают с выбора расчетной схемы (модели). Для этого, перед тем как приступить к расчету конструкции, устанавливают, что в данном случае существенно и что несущественно. Необходимо произвести схематизацию объекта и отбросить все факторы, которые не оказывают значительного влияния на суть задачи. Это необходимо, поскольку учет всех факторов невозможен впоследствии их неисчерпаемости.
Реальный объект, мысленно освобожденный от несущественных особенностей, называется расчетной схемой. Для одного реального объекта может существовать несколько расчетных схем в зависимости от требуемой точности и целей расчета.
Построение расчетной схемы начинается со схематизации структуры и свойств материала. Принято рассматривать все материалы как сплошную среду - независимо от особенностей молекулярного строения вещества. Кроме того, среда считается однородной (несмотря на кристаллическое решение). Обычно среду считают изотропной (кроме анизотропных пластмасс).
Вводятся упрощения в геометрию реального объекта. Основным приемом здесь является приведение формы тела к схеме стержня. Под стержнем понимают тело, одно из измерений которого (длина) много больше двух других. Стержень может иметь поперечное сечение как постоянное, так и переменное вдоль оси. Многие сложные конструкции можно рассматривать, как состоящие из стержней. Их называют стержневыми системами. Часто стержень называют брусом или балкой.
Второй типовой геометрической схемой является оболочка. Это - тело, одно измерение которого (толщина) значительно меньше двух других.
В схеме делаются упрощения и в системе сил.
Например, нагрузку от подвески с грузом, распределенную по длине l, при расчете балки можно заменить сосредоточенной силой G.
1.2.2 Силы внешние и внутренние
Силы являются мерилом взаимодействия тел. Если конструкция рассматривается изолированно от окружающих тел, то действие последних на конструкцию заменяется силами, которые называются внешними. Примером сил, распределенных по объему тела, является вес. В число внешних сил включаются и реакции связей, дополняющие систему сил до равновесной.
Взаимодействие между частями рассматриваемого объекта внутри очерченной области объекта характеризуется внутренними силами. Внутренние силы возникают не только между отдельными взаимодействующими узлами конструкции, но и между всеми сложными частицами объекта.
Например, если стержень нагружен силами Р1, Р2, …, Рп, то в нем возникают внутренние силы, которые выявляются, если рассечь мысленно стержень сечением А на две части. Такой прием выявления внутренних сил называется методом сечений.
Так как связи между двумя половинами стержня устранены, их необходимо заменить системой внутренних сил. Из статики мы знаем, что из уравнений равновесия можно найти не закон распределения внутренних сил, а лишь их равнодействующую. Перенеся ее в центр тяжести сечения (что делается с введением пары сил), мы получим главный вектор R и главный момент М.
Выберем систему координат х, у, z таким образом, чтобы ось z была направлена нормально к плоскости сечения, а х и у располагались в этой плоскости.
Спроектировав R и М на эти оси, получим 6 составляющих: 3 силы и 3 момента. Эти составляющие называются внутренними силовыми факторами в сечении стержня.
Составляющая N, направленная по оси z, называется нормальной или продольной силой в сечении.
Силы Qx и Qy называются поперечными силами. Момент относительно оси z (Mк) называется крутящим моментом, а моменты Мх и Му - изгибающими моментами. Названные 6 составляющих находятся из уравнений равновесия для отсеченной части стержня.