- •1. Элементы прикладной механики
- •1.1 Статические, кинематические и динамические основы конструирования технических систем
- •1.1.1 Основные понятия статики [1, с.9-17]
- •1.1.1.1 Силы
- •1.1.1.2 Связи и их реакции
- •1.1.1.3 Сложение сил [1, с.18-31]
- •1.1.1.4 Момент силы относительно точки [1, с.31-33]
- •1.1.1.5 Пара сил. Момент пары [1, с.33-37]
- •1.1.1.6 Приведение системы сил к центру. Условия равновесия
- •1.1.1.7 Трение [1, с.64-72]
- •1.1.2 Основные сведения из кинематики
- •1.1.2.1 Способы задания движения точки
- •1.1.2.2 Скорость и ускорение точки
- •1.1.2.3 Решение задач кинематики точки
- •1.1.3 Основные сведения из динамики
- •1.1.3.1 Законы динамики [1, с.181-184]
- •1.1.3.2 Задачи динамики
- •1.1.3.3 Основные виды сил, рассматриваемые в задачах динамики
- •1.1.3.4 Общие теоремы динамики [1, с. 201-219]
- •1.1.3.5 Введение в динамику системы
- •1.2 Основные понятия о важнейших свойствах конструкций технических систем: прочности, жесткости и устойчивости
- •1.2.1 Реальный объект и расчетная схема
- •1.2.2 Силы внешние и внутренние
- •1.2.3 Напряжения
- •1.2.4 Перемещения и деформации
- •1.2.5 Закон Гука
- •1.2.6 Растяжение и сжатие
- •1.2.7 Статически неопределимые системы при растяжении и сжатии
- •1.2.8 Напряженное и деформированное состояния при растяжении и сжатии
- •1.2.9 Испытание материалов на растяжение и сжатие
- •1.2.10 Влияние температуры и фактора времени на механические характеристики материала
- •1.2.11 Коэффициент запаса
- •1.2.12. Кручение
- •1.2.12.1 Чистый сдвиг
- •1.2.12.2 Кручение стержня с круглым поперечным сечением
- •1.2.13. Геометрические характеристики плоских поперечных сечений стержня
- •1.2.13.1 Статические моменты
- •1.2.13.2 Моменты инерции сечения
- •1.2.14. Изгиб
- •1.2.14.1 Напряжения при чистом изгибе
- •1.2.14.2 Напряжения при поперечном изгибе
- •1.2.15. Прочность при циклически изменяющихся напряжениях
- •1.2.16. Понятие об устойчивости
- •1.2.17. Динамическое нагружение
- •1.3 Элементы теории механизмов и деталей машин
- •1.3.1 Основные определения
- •1.3.2 Классификация кинематических пар
- •1.3.3 Виды механизмов и их структурные схемы
- •1.3.4 Структурный анализ и синтез механизмов. Влияние избыточных связей на работоспособность и надежность машин
- •1.3.5 Кинематические характеристики механизмов
- •1.3.6. Силы, действующие в механизмах и способы их определения
- •1.3.7. Типовые детали машин
- •1.3.7.1. Валы и оси
- •1.3.7.2. Опоры скольжения
- •1.3.7.3. Опоры качения
- •1.3.7.4. Пружины и рессоры
- •1.3.7.5. Предохранители от перегрузки
- •1.3.7.6. Станины, плиты, коробки и другие корпусные детали
- •1.3.8. Соединения деталей машин
- •1.3.8.1. Резьбовые соединения
- •1.3.8.2. Заклепочные соединения
- •1.3.8.3. Сварные соединения
- •1.3.8.4. Соединения пайкой и склеиванием
- •1.3.8.5. Клеммовые соединения
- •1.3.8.6. Шпоночные, зубчатые (шлицевые) и профильные соединения
- •1.3.8.7. Соединения деталей посредством посадок с гарантированным натягом (прессовые соединения)
- •1.3.9. Механические передачи
- •1.3.9.1. Ременные передачи
- •1.3.9.2. Фрикционные передачи
- •1.3.9.3. Зубчатые передачи
- •1.3.9.4. Червячные передачи
- •1.3.9.5. Цепные передачи
- •1.3.9.6. Передача винт-гайка
- •1.3.10. Муфты
- •Литература к теме 1
1.3.7.2. Опоры скольжения
Назначение опор - направлять движение обслуживаемых ими осей и валов и воспринимать действующие на эти детали усилия.
В зависимости от рода трения между поверхностями опоры делятся на опоры трения скольжения и трения качения.
Опоры, нагружаемые через шейку или шип вала, называются подшипниками, опоры, нагружаемые осевыми силами через пяту, называются подпятниками.
Качество работы подшипников скольжения в значительной мере определяется условиями трения скольжения. Различают трение скольжения сухое, полусухое, граничное и жидкостное. Сухое трение имеет место между двумя идеально чистыми поверхностями, при отсутствии какого-либо вещества между ними. Коэффициент трения при этом максимален. Такие условия можно получить только в лабораторных условиях. В реальных условиях между поверхностями всегда есть тоните пленки газа, влаги и жира. Трение в присутствии таких пленок называется полусухим. Хотя толщина пленки составляет всего несколько ангстрем, она заметно снижает коэффициент трения.
Граничное трение происходит в присутствии искусственно введенной прослойки смазочного вещества толщиной 0,1 - 0,5 мкм. Коэффициент трения при этом еще меньше.
По мере увеличения толщины масляного слоя уменьшается степень влияния твердой поверхности на молекулы масла. Один слой масла начинает скользить по другому и сопротивление начинает определяться вязкостью масла. Такое трение называется жидкостным и является наиболее желательным, поскольку полностью исключает непосредственное соприкосновение опорных поверхностей. Но для его осуществления необходимо создать условия, предотвращающие выдавливание смазки из зазора между поверхностями.
Подшипники и подпятники скольжения изготавливаются из антифрикционных материалов: чугуна, бронзы, баббита (сплав из олова, свинца, сурьмы и др.). Хорошим антифрикционным материалом является фторопласт, но из-за низкой теплопроводности его приходится наносить на основу из пористой бронзы. Удобны графитовые подшипники, поскольку они обладают свойством самосмазывания и не нуждаются в смазочном масле. В текстильном оборудовании широко применяются подшипники из прессованной древесины, поскольку жировая смазка может оставить пятна на ткани при случайном попадании, а деревянные подшипники работают на водяной смазке.
Конструктивно узел подшипника представляет собой стальной или чугунный корпус - сплошной или с отъемной крышкой, внутри которого находится вкладыш из антифрикционного материала. Предусматриваются отверстия и канавки для подачи масла в зазор между вкладышем и цапфой вала.
Одним из методов подачи масла является установка на корпусе пресс-масленки или штауфера.
1.3.7.3. Опоры качения
Опора качения состоит из корпуса, похожего на корпус опоры скольжения, в который вместо кольцевого вкладыша из антифрикционного материала вставлен подшипник качения.
По характеру воспринимаемой нагрузки подшипники качения подразделяются на радиальные, радиально-упорные, упорные.
Радиальные подшипники воспринимают от вала нагрузку, перпендикулярную оси вращения. Осевая нагрузка может носить случайный характер и по величине не должна превышать 10% от радиальной.
Упорный подшипник воспринимает только нагрузку, действующую вдоль оси вращения. Радиально-упорный подшипник воспринимает и ту, и другую нагрузки.
По виду тела качения подшипники делятся на шариковые, роликовые и игольчатые, при этом шарикоподшипники могут быть одно - и двухрядные.
Принцип устройства рассмотрим на примере самого простого однорядного радиального шарикоподшипника. Он состоит из следующих элементов: внутреннее кольцо, которое насаживается на цапфу вала; наружное кольцо, которое запрессовывается в корпус подшипника; шарики - тела качения, которые воспринимают нагрузку и обеспечивают трение качения при вращении внутреннего кольца относительно наружного; сепаратор, который обеспечивает равномерное распределение шариков в зазоре между наружным и внутренним кольцами.
