
- •«Утверждаю»
- •Конспект лекций
- •Средства обеспечения информационной безопасности в телекоммуникационных системах
- •Литература
- •Основные понятия информационной безопасности (иб)
- •1.1. Постановка задачи сетевой безопасности
- •1.2. Основные понятия информационной безопасности
- •1.3. Классификация угроз безопасности корпоративных сетей
- •Пути реализации угроз безопасности сети
- •1.4. Обеспечение безопасности сетей передачи данных
- •1.4.1. Основные виды политики безопасности
- •1.4.2. Построение системы защиты сети
- •1.5. Базовые технологии безопасности сетей
- •1.5.1. Аутентификация
- •1.5.2. Авторизация доступа
- •1.5.3. Аудит
- •1.5.4. Технология защищенного канала
- •Принципы криптографической защиты информации
- •2.1. Схема симметричной криптосистемы
- •2.2. Схема асимметричной криптосистемы
- •2.3. Аппаратно-программные средства защиты компьютерной информации
- •3. Современные симметричные криптосистемы
- •3.1 Классическая сеть Фейстеля
- •3.2. Американский стандарт шифрования данных des
- •Функция h завершающей обработки ключа
- •3.2.1. Основные режимы работы алгоритма des
- •Режим "Электронная кодовая книга"
- •Режим "Сцепление блоков шифра"
- •Режим "Обратная связь по шифру"
- •Режим "Обратная связь по выходу"
- •3.3. Области применения алгоритма des
- •3.4. Комбинирование блочных алгоритмов
- •3.5. Алгоритм шифрования данных idea
- •Подключи шифрования и расшифрования алгоритма idea
- •3.6. Отечественный стандарт шифрования данных
- •Режим простой замены
- •Режим гаммирования
- •Режим гаммирования с обратной связью
- •Режим выработки имитовставки
- •3.7. Блочные и поточные шифры
- •Основные характеристики криптосистем
- •4. Асимметричные криптосистемы
- •4.1. Концепция криптосистемы с открытым ключом
- •4.2. Однонаправленные функции
- •4.3. Криптосистема шифрования данных rsa
- •4.3.1. Процедуры шифрования и расшифрования в
- •4.3.2. Безопасность и быстродействие криптосистемы
- •Оценки длин ключей для асимметричных криптосистем, бит
- •4.4. Схема шифрования Полига – Хеллмана
- •4.5. Схема шифрования Эль Гамаля
- •Скорости работы схемы Эль Гамаля
- •4.6. Комбинированный метод шифрования
- •Длины ключей для симметричных и асимметричных криптосистем при
- •5. Идентификация и проверка подлинности
- •5.1. Основные понятия и концепции
- •5.2. Идентификация и аутентификация пользователя
- •5.2.1 Типовые схемы идентификации и аутентификации
- •5.2.2. Биометрическая идентификация и
- •5.3. Взаимная проверка подлинности пользователей
- •5.4. Протоколы идентификации с нулевой передачей
- •5.4.1. Упрощенная схема идентификации с нулевой
- •6. Электронная цифровая подпись
- •6.1. Проблема аутентификации данных и электронная
- •6.2. Однонаправленные хэш-функции
- •6.2.1. Однонаправленные хэш-функции на основе
- •Схемы безопасного хэширования, у которых длина хэш-значения
- •6.2.2. Отечественный стандарт хэш-функции
- •6.3. Алгоритмы электронной цифровой подписи
- •6.3.1. Алгоритм цифровой подписи rsa
- •6.3.2. Алгоритм цифровой подписи Эль Гамаля (egsa)
- •6.3.3. Алгоритм цифровой подписи dsa
- •6.3.4. Отечественный стандарт цифровой подписи
- •6.4. Цифровые подписи с дополнительными
- •6.4.1. Схемы слепой подписи
- •6.4.2. Схемы неоспоримой подписи
- •7. Управление криптографическими ключами
- •7.1. Генерация ключей
- •7.2. Хранение ключей
- •7.2.1. Носители ключевой информации
- •7.2.2. Концепция иерархии ключей
- •7.3. Распределение ключей
- •7.3.1. Распределение ключей с участием центра
- •7.3.2. Протокол аутентификации и распределения
- •7.3.3. Протокол для асимметричных криптосистем с
- •7.3.4. Прямой обмен ключами между пользователями
Режим гаммирования с обратной связью
Зашифрование открытых данных в режиме гаммирования с обратной связью. Криптосхема, реализующая алгоритм зашифрования в режиме гаммирования с обратной связью, имеет вид, показанный на рис. 3.14.
Открытые данные, разбитые на 64-разрядные блоки Т0(1), Т0(2), ..., Т0(m), зашифровываются в режиме гаммирования с обратной связью путем поразрядного сложения по модулю 2 с гаммой шифра Гш, которая вырабатывается блоками по 64 бита:
Гш = (Гш(1), Гш(2), ..., Гш(m)).
Число двоичных разрядов в блоке Т0(m) может быть меньше 64, при этом неиспользованная для шифрования часть гаммы шифра из блока Гш(m) отбрасывается.
Уравнения зашифрования в режиме гаммирования с обратной связью имеют вид:
Тш(1) = А ( ) Т0(1) = Гш(1) Т0(1),
Тш(i) = A (Тш(i–1)) Т0(i) = Гш(i) Т0(i), i = 2…m.
Рисунок 3.14 – Схема реализации режима гаммирования с обратной связью
Здесь Тш(i) – i-й 64-разрядный блок зашифрованного текста; А(·) – функция зашифрования в режиме простой замены; m – определяется объемом открытых данных.
Аргументом функции А (·) на первом шаге итеративного алгоритма является 64-разрядная синхропосылка , а на всех последующих шагах – предыдущий блок зашифрованных дан-ных Тш(i–1).
Процедура зашифрования данных в режиме гаммирования с обратной связью реализуется следующим образом. В КЗУ вводятся 256 бит ключа. В накопители N1 и N2 вводится синхро-посылка = (S1, S2, ..., S64) из 64 бит. Исходное заполнение накопителей N1 и N2 зашифровывается в режиме простой замены. Полученное в результате зашифрования заполнение накопителей N1 и N2 образует первый 64‑разрядный блок гаммы шифра Гш(1)=A( ), который суммируется поразрядно по модулю 2 в сумматоре СМ5 с первым 64-разрядным блоком открытых данных
Т0(1) = (t1(1), t2(1),..., t64(1)).
В результате получают первый 64-разрядный блок зашифрованных данных
ТШ(1) = ГШ(1) Т0(1),
где ТШ(1) = (1(1), 2(1), ..., 64(1)).
Блок зашифрованных данных ТШ(1) одновременно является также исходным состоянием накопителей N1, N2 для выработки второго блока гаммы шифра ГШ(2), и поэтому по обратной связи ТШ(1) записывается в указанные накопители N1 и N2.
Заполнение накопителя N1
(32(1), 31(1), ..., 2(1), 1(1)).
32, 31, ..., 2, 1 номер разряда N1
Заполнение накопителя N2
(64(1), 63(1), ..., 34(1), 33(1)).
32, 31, ..., 2, 1 номер разряда N2
Заполнение накопителей N1 и N2 зашифровывается в режиме простой замены. Полученное в результате зашифрования заполнение накопителей N1 и N2 образует второй 64-разрядный блок гаммы шифра ГШ(2), который суммируется поразрядно по модулю 2 в сумматоре СМ5 со вторым блоком открытых данных Т0(2):
ГШ(2) Т0(2) = ТШ(2).
Выработка последующих блоков гаммы шифра ГШ(i) и зашифрование соответствующих блоков открытых данных Т0(i) (i=3…m) производится аналогично.
Если длина последнего m-го блока открытых данных Т0(m) меньше 64 разрядов, то из ГШ(m) используется только соответствующее число разрядов гаммы шифра, остальные разряды отбрасываются.
В канал связи или память ЭВМ передаются синхропосылка и блоки зашифрованных данных ТШ(1), ТШ(2), ..., ТШ(m).
Расшифрование в режиме гаммирования с обратной связью. При расшифровании криптосхема имеет тот же вид, что и при зашифровании (см. рис.3.14).
Уравнения расшифрования:
Т0(1) = А( ) Тш(1) = Гш(1) Тш(1),
Т0(i) = Гш(i) Тш(i) = A (Тш(i–1) ) Тш(i), i = 2…m.
Реализация
процедуры расшифрования зашифрованных
данных в режиме гаммирования с обратной
связью происходит следующим образом.
В КЗУ вводят 256 бит того же ключа, на
котором осуществлялось зашифрование
открытых блоков Т0(1),
Т0(2),
..., Т0(m).
В накопители N1
и N2
вводится синхропосылка
.
Исходное заполнение накопителей N1
и N2
(синхропосылка
)
зашифровывается в режиме простой замены.
Полученное в результате зашифрования
заполнение N1
и N2
образует первый блок гаммы шифра
ГШ(1) = А( ),
который суммируется поразрядно по модулю 2 в сумматоре СМ5 с блоком зашифрованных данных ТШ(1).
В результате получается первый блок открытых данных
Т0(1) = Гш(1) Тш(1).
Блок зашифрованных данных Тш(1) является исходным заполнением накопителей N1 и N2 для выработки второго блока гаммы шифра ГШ(2): ГШ(2) = А(ТШ(1)). Полученное заполнение накопителей N1 и N2 зашифровывается в режиме простой замены. Образованный в результате зашифрования блок ГШ(2) суммируется поразрядно по модулю 2 в сумматоре СМ5 со вторым блоком зашифрованных данных ТШ(2). В результате получают второй блок открытых данных. Аналогично в N1, N2 последовательно записывают блоки зашифрованных данных ТШ(2), ТШ(3), ..., ТШ(m), из которых в режиме простой замены вырабатываются блоки гаммы шифра ГШ(3), ГШ(4), ..., ГШ(m).
Блоки гаммы шифра суммируются поразрядно по модулю 2 в сумматоре СМ5 с блоками зашифрованных данных ТШ(3),ТШ(4), ..., ТШ(m).
В результате получают блоки открытых данных
Т0(3), Т0(4), ..., Т0(m),
при этом последний блок открытых данных Т0(m) может содержать меньше 64 разрядов.