
- •Вопрос 1 основные требования, предъявляемые к устройствам релейной защиты
- •Вопрос 2 повреждения в электроустановках
- •Ненормальные режимы
- •Вопрос 3 и 4 источники и схемы оперативного тока
- •Вопрос 5
- •Реле тока на индукционном принципе
- •Индукционные реле тока серий рт-80 и рт-90
- •Вопрос 6 требования к точности трансформаторов тока, питающих рз
- •Вопрос 7 трансформаторы тока и их погрешности
- •Параметры, влияющие на уменьшение намагничивающего тока
- •Вопрос 8 типовые схемы соединения обмоток трансформаторов тока
- •Вопрос 9 нагрузка трансформаторов тока
- •Вопрос 10 выдержки времени защиты
- •Вопрос 11 принцип действия токовых зашит
- •Максимальная токовая зашита лэп
- •Схемы мтз на постоянном оперативном токе
- •Вопрос 12 максимальная токовая защита с блокировкой реле мин напряжения
- •Вопрос 13 . Максимальные токовые защиты на переменном оперативном токе
- •Вопрос 14 выбор тока срабатывания
- •Вопрос 15 принцип действия токовых отсечек
- •Схемы отсечек
- •Отсечки мгновенного действия на линиях с односторонним питанием
- •Неселективные отсечки
- •Отсечки на линиях с двусторонним питанием
- •Отсечки с выдержкой времени
- •Вопрос 16 защита от коротких замыканий на землю в сети с глухозаземленной нейтралью общие сведения
- •8.2. Максимальная токовая защита нулевой последовательности
- •8.3. Токовые направленные защиты нулевой последовательности
- •Отсечки нулевой последовательности
- •Выбор уставок токовых защит нулевой последовательности
- •Вопрос 17 . Принципы выполнения защиты от однофазных замыканий на землю
- •Фильтры токов и напряжений нулевой последовательности
- •Вопрос 18 токи и напряжения при однофазном замыкании на землю
- •Вопрос 20 выбор уставок срабатывания
- •Мертвая зона
- •Токовые направленные отсечки
- •Оценка токовых направленных защит
- •Вопрос 21 необходимость направленной защиты в сетях с двусторонним питанием
- •Функциональная схема и принцип действия токовой направленной защиты
- •Схемы включения реле направления мощности
- •Поведение реле направления мощности, включенных на токи неповрежденных фаз
- •Схемы направленной максимальной токовой защиты
- •Вопрос 22 принцип действия и виды поперечных дифференциальных защит параллельных линий
- •Токовая поперечная дифференциальная зашита
- •Направленная поперечная дифференциальная защита
- •Вопрос 25 . Принцип действия продольной дифференциальной защиты
- •Токи небаланса в дифференциальной защите
- •Вопрос 26 дистанционная защита назначение и принцип действия
- •Характеристики выдержки времени дистанционных защит
8.2. Максимальная токовая защита нулевой последовательности
Схема и принцип действия защиты. Ненаправленная МТЗ НП применяется в сети с односторонним питанием места КЗ током I0, т.е. при расположении трансформаторов с заземленной нейтралью с одной стороны защищаемого участка. Функциональная схема этой РЗ состоит из одного ИО – пускового токового реле КАО (рис.8.4, а, б), реле времени КТ и исполнительного реле KL. Реле тока КАО включено на фильтр тока НП, в качестве которого используется нулевой провод ТТ, соединенных по схеме полной звезды. Ток в КАО равен геометрической сумме вторичных токов трех фаз:
(8.2)
При появлении тока 3I0 реле КАО срабатывает и приводит в действие реле времени КТ; последнее через время t подает сигнал на промежуточное реле KL, которое дает команду на отключение выключателя.
Согласно (8.2) ток в пусковом реле РЗ появляется только в том случае, когда имеется ток I0, поэтому МТЗ НП, показанная на рис.8.4, может работать только при одно- и двухфазных КЗ на землю. При междуфазных КЗ (без "земли"), а также при нагрузке и качаниях МТЗ НП не действует, поскольку в этих режимах сумма токов IA + IB + IC = 0 и ток 3 I0 отсутствует. Важным преимуществом МТЗ НП является то, что она не реагирует на нагрузку. Благодаря этому ее не требуется отстраивать от токов нормального режима и перегрузок, что позволяет обеспечить более высокую чувствительность этой РЗ по сравнению с МТЗ, реагирующими на фазные токи.
О
днако
в действительности работа МТЗ НП
осложняется погрешностью ТТ, обусловленной
их током намагничивания (см. §3.1).
Поэтому в режимах, когда имеет место баланс первичных токов (IA + IB + IC = 0), сумма вторичных токов Ia + Ib + Ic ≠ 0. В нулевом проводе и пусковом реле МТЗ НП появляется остаточный ток, называемый током небаланса (Iнб), который может вызвать нежелательное действие РЗ при отсутствии первичного тока I0.
Ток небаланса. Значение Iнб можно найти, если в (8.2) учесть токи намагничивания ТТ:
(8.3)
Очевидно, что второй член в (8.3) является током небаланса. Обозначив его Iнб и выразив первый член (8.6) через I0 получим
(8.4)
Выражение (8.4) показывает, что ток в пусковом реле МТЗ НП состоит из двух слагающих: одно обусловлено первичным током I0 и второе – погрешностью ТТ. Последнее искажает значение тока 3I0, на которое реагирует МТЗ НП. Как следует из (8.3), ток небаланса равен геометрической сумме намагничивающих токов ТТ:
(8.5)
Сумма намагничивающих токов обычно не равна нулю. Это объясняется тем, что токи намагничивания имеют несинусоидальную форму и, кроме того, различаются по значению и фазе вследствие нелинейности и неидентичности характеристик намагничивания и неравенства в величине вторичных нагрузок ТТ разных фаз. Значение тока Iнб mах в нулевом проводе звезды ТТ обычно определяется при токе трехфазного КЗ в расчетной точке.
Для ограничения тока небаланса ТТ должны работать в ненасыщенной части характеристики намагничивания и иметь по возможности одинаковые токи намагничивания во всех фазах. Чтобы обеспечить эти условия, ТТ, питающие МТЗ НП, должны: удовлетворять условию 10%-ной погрешности при максимальном значении тока трехфазного КЗ в начале следующего участка; иметь идентичные характеристики намагничивания и одинаковые нагрузки вторичных цепей во всех фазах.