
3 Расчет электронно-оптической системы
Для расчета зададимся исходными данными:
Ускоряющее напряжение, кВ |
|
Ток эмиссии, А |
|
Удельная теплоемкость меди, Дж/К.кг |
|
Температура плавления меди, К |
|
Комнатная температура, К |
|
Плотность меди, г/см3 |
|
Диаметр пучка, мм |
|
Найдем мощность электронного пучка:
(МВт)
(3.1)
Площадь электронного пучка:
(см2)
(3.2)
Найдем плотность мощности электронного пучка для нашей установки:
(Вт/см2)
(3.3)
Для
плавки плотность мощности в пучке
108
– 1013
Вт/см2.
Из расчетов приведенных выше, видно,
что данной плотности мощности достаточно
для плавки материалов.
3.1 Расчет пушки Пирса сферического типа
Исходные данные:
Ускоряющее напряжение, кВ |
|
Ток эмиссии, А |
|
Плотность тока эмиссии, А/см2 |
|
Площадь импрегнированного катода, см2 |
|
Величина скважности |
|
Для формирования сходящегося аксиально - симметрического пучка будем, используется пушку Пирса сферического типа.
1 – катод; 2 – фокусирующий электрод; 3 – анод.
Рисунок 3.2 – Пушка Пирса сферического типа.
Для того, что бы пушка имела оптимальную геометрию, будем использовать следующее соотношения:
;
;
;
.
В электронных пушках технологического назначения, в основном, используются интенсивные пучки. Мерой интенсивности пучка является первеанс пучка:
(3.1.1)
где Р - первианс; I – ток пучка; Ua - ускоряющее напряжение.
(А/В3/2) (3.1.2)
Пушка – высокопервиансная, следовательно, необходимо учитывать действие пространственного заряда.
Используем соотношения для оптимальной пушки Пирса рассчитаем:
Угол
- половина угла сходимости пучка:
,
(3.1.3)
где P – микропервеанс;
Радиус кривизны катодной сферы:
(см)
(3.1.4)
Радиус кривизны анодной сферы:
(см)
(3.1.5)
Определим расстояние анод-катод:
(см)
(3.1.6)
Проверим полученный результат по закону 3/2:
(3.1.7)
(А) (3.1.8)
Видим, что 10(А) укладываются в 33,057(А), следовательно, полученное расстояние катод - анод сможет обеспечить ток эмиссии равный 10 А.
Радиус пучка на выходе из катода:
(см)
(3.1.9)
С помощью полученного радиуса вычислим площадь катода и проверим эту площадь на эмиссию:
(см)
2
(3.1.10)
Через плотность тока вычислим ток эмиссии с этой площади и, так как катод работает в импульсном режиме, домножим на добротность:
(А)
(3.1.11)
Из расчетов видно,
что 10 (А) укладывается в 14,844 (А),
следовательно, площадь катода
(см)2
сможет
обеспечить ток эмиссии равный 10(А)
Рассчитаем радиус пучка на входе в анодное отверстие:
(см)
(3.1.12)
Расстояние анод-кроссовер:
(см)
(3.1.13)
Радиус пучка в кроссовере:
(см)
(3.1.14)
Полагая, что напряженность поля за анодом равна нулю, можно определить фокусное расстояние:
(см)
(3.1.15)
Отрицательный результат показывает, что фокус является мнимым.
Далее определим угол расхождения пучка за анодом:
, (3.1.16)
где
- преломляющее действие анодной линзы.
Коэффициент
преломления
- функция от
[2], и, для случая
,
.
На рисунке 3.3 представлена зависимость
коэффициента преломления от вспомогательной
функции F(
).
Рис. 3.3 - Зависимость коэффициента преломления, траектории в анодном отверстии пушки сферического типа, n и вспомогательной функции F( ) .
отношение радиусов
кривизны анодной и катодной поверхностей
исходного сферического диода.
По формуле 3.1.16 определим угол расхождения:
. (3.1.17)
На рисунке 3.4 представлено схематическое расположение электродов исходя из расчетных параметров, все размеры представлены в мм.
Рис. 3.4 –Схематическое расположение электродов.