Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Азимов А. - Краткая история биологии. От алхими...doc
Скачиваний:
9
Добавлен:
10.09.2019
Размер:
545.28 Кб
Скачать

Метаболизм клетки

Эффект от влияния химиотерапевтических агентов сводится к нарушению естественного метаболизма клетки. Поиск таких агентов рационализируется, если изучены все детали метаболизма.

Английский биохимик Артур Хэрден (1865 — 1940) был первооткрывателем процессов метаболизма. Он изучал энзимы дрожжевой вытяжки и в 1905 г. отметил, что эта иытяжка разлагала сахар и быстро вырабатывала двуокись углерода — однако со временем скорость процесса замедлялась. Ученый предположил, что содержание энзимов падает, однако опыт показал, что это не так. При добавлении простого неорганического вещества — фосфата натрия — энзимы начинали свою работу вновь.

По мере работы энзимов содержание фосфата натрия падало. Хэрден выяснял, не образуется ли при этом какой-либо органический фосфат. Он обнаружил фосфат в виде молекулы сахара, к которой присоединились две фосфатгруппы. Это положило начало химии промежуточных продуктов метаболизма,

Немецкий биохимик Отто Фритц Мейергоф (1884 — 1951) показал, что при мускульном сокращении исчезает гликоген (крахмал), а в соответствующих количествах появляется молочная кислота. Энергия реакции появлялалась без участия кислорода. Когда же мышца отдыхала, некоторое количество молочной кислоты окислялось. Энергия, развивающаяся таким образом, позволяла большой части молочной кислоты реконвертироваться в гликоген.

Английский физиолог Арчибалд Вивиен Хилл (1886—1977) пришел к тому же заключению путем измерения количества тела, выделяемого сокращающейся мышцей.

Детали превращения гликогена в молочную кислоту были разработаны в 1930-х годах американскими биохимиками Карлом Фердинандом Кори (1896 - 1984) и Герти Терезой Kopи (1896— 1957). Ученые выделили из мышечной ткани неизвестный компонент и показали, что это — первый продукт распада гликогена в мышцах. Они профильтровали каждый компонент на каждом этапе. Один из промежуточных продуктов был фосфат сахара, обнаруженный Хэрденом гораздо ранее.

Этот факт оказался знаменателен: в XX в. было выяснено, что фосфатгруппа играет важную роль в биохимии. Американский биохимик Фриц Альберт Липман (1899 — 1986) показал, что фосфатгруппа встречается в молекулах в одном-двух типах размещения: низкоэнергетическом и высокоэнергетическом. Когда молекулы крахмала либо жира разлагаются, высвобождаемая энергия используется для конвертации низкоэнергетических фосфатов в высокоэнергетические. Таким образом, энергия запасается в организме в удобной химической форме. Разложение одного высокоэнергетического фосфата освобождает столько энергии, чтобы привнести различные энергопотребляющие химические изменения в организме.

Этапы в разложении гликогена, требующие присутствия кислорода, стало возможно изучить при помощи новой методики, разработанной немецким биохимиком Отто Генрихом Варбургом (1883-1970). В 1923 г. он изобрел метод изготовления тонких срезов тканей (живых, абсорбирующих кислород) и сумел измерить расход ими кислорода.

В малой колбе с тонкостенной U-образной трубкой он наливал на дно трубки окрашенный раствор. Углекислый газ, выработанный тканью, абсорбировался спиртовым раствором в колбе. Кислород не замещался углекислым газом, и поэтому в колбе образовывался частичный вакуум и окрашенная жидкость в трубке поднималась в колбу. По изменению уровня окрашенной жидкости, тщательно измеренному, можно было подсчитать расход кислорода.

Влияние различных компонентов по расходу ими кислорода оценивалось как участие в промежуточных продуктах метаболизма. Английский биохимик Ханс Адольф Кребс (1900—1981) известен своими работами в данной области. К 1940 г. Кребс разработал основные этапы разложения молочной кислоты до двуокиси углерода и воды, и последовательность реакций часто называют циклом Кребса. Кребс также установил этапы образования мочи из аминокислот.

Наравне с этими знаниями по метаболизму клетки накапливались знания о тонкой структуре клетки. Были разработаны новые методики исследований. В 1930-х годах был сконструирован первый электронный микроскоп. Он давал несравнимо большую разрешающую способность, чем самые мощные обычные микроскопы.

Американский ученый Владимир Зворыкин (1888 — 1982) приспособил электронный микроскоп к исследованиям цитологии. Можно было рассматривать частицы размером с большую молекулу; в протоплазме клетки был найден комплекс малых, но высокоорганизованных структур, названных органеллами.

В 1940-х годах были разработаны методики выделения органелл разного размера. Среди крупных — митохондрии. Типичная клетка печени содержит около тысячи митохондрий, каждая около пятитысячной миллиметра длиной. Их детально исследовал американский биохимик Дэвид Эзра Грин.

Он выяснил, что именно в них идут реакции цикла Кребса.

Итак, крошечные митохондрии и есть «электрические станции клетки».