
- •1. Характеристика предмета коллоидной химии
- •1.1 Признаки объектов коллоидной химии
- •1.2 Количественные характеристики дисперсных систем
- •1.3 Энергетическая и геометрические характеристики поверхности
- •1.4 Классификация дисперсных систем
- •1.5 Методы получения коллоидных систем
- •1.6. Правило фаз Гиббса для дисперсных систем
- •2. Поверхностное натяжение
- •2.1 Термодинамические параметры поверхностного слоя
- •2.2 Экспериментальные методы определения поверхностного натяжения.
- •2.3 Внутренняя полная поверхностная энергия.
- •2.4 Температурная зависимость σ и полной внутренней поверхностной энергии.
- •2.5 Механизм процессов самопроизвольного уменьшения σ. Принцип Гиббса-Кюри.
- •2.6 Внутреннее давление. Уравнение Лапласа
- •2.7 Влияние дисперсности на реакционную способность
- •2.8 Влияние дисперсности на растворимость вещества
- •2.9 Влияние дисперсности на равновесие химической реакции.
- •2.10 Влияние дисперсности на температуру фазовых переходов.
- •2.11 Уравнение капиллярной конденсации
- •3. Термодинамика образования новой фазы.
- •3.1 Кинетика образования новой фазы в системе “ж – т”.
- •3.2 Управление степенью дисперсности.
- •4. Двойной электрический слой. Механизм его образования.
- •4.1 Строение дэс
- •4.2 Примеры д.Э.С. И строение мицеллы
- •4.3 Термодинамика образования д.Э.С. Уравнение Габриэль-Липмана
- •5. Адсорбция. Зависимость от параметров системы
- •5.1 Типы адсорбции
- •5.2 Ионный обмен
- •5.3 Фундаментальные адсорбционные уравнения Гиббса
- •5.4 Адсорбция на границе ж-г
- •5.5 Уравнение Шишковского
- •5.6 Изотерма адсорбции Ленгмюра
- •5.7 Многокомпонентная адсорбция из газовой фазы.
- •5.8 Учет неэквивалентности адсорбционных центров
- •5.9. Капиллярные явления. Формула Жюрена
- •5.10 Адсорбция на пористых телах.
- •5.11 Адсорбция на микропористых телах.
- •5.12 Селективная адсорбция из растворов
- •6. Электрокинетические явления
- •6.1 Электроосмос
- •6.2 Электрофорез
- •7. Адгезия. Механизм процессов адгезии
- •7.1 Смачивание. Краевой угол
- •7.2 Связь работы адгезии с краевым углом
- •7.3 Эффект Марагони.
- •7.4 Правило Антонова
- •8. Флотация
- •9. Рассеяние света ультромикрогетерогенными частицами
- •10. Устойчивость дисперсных систем.
- •10.1 Седиментационная устойчивость дисперсных систем
- •10.2 Седиментационный анализ.
- •I метод.
- •10.3 Механические методы седиментации
- •10.4 Агрегативная устойчивость дисперсных систем
- •10.5 Кинетика коагуляции.
- •10.6 Коагуляция золей электролитами
- •10.7 Условие термодинамической устойчивости дисперсных систем
- •11. Эмульсии. Их стабилизация и разрушение.
- •12. Пены, стабилизация и разрушение.
- •13. Аэрозоли. Устойчивость и разрушение.
- •14. Суспензии. Обеспечение их устойчивости.
- •15. Гели
- •16. Экспериментальные методы изучения поверхностей.
5.5 Уравнение Шишковского
Большинство органических веществ являются ПАВ. Все они имеют дифильное строение:
1. по типу гидрофильных групп различают ионогенные и неионогенные ПАВ (жирные кислоты)
ионогенные:
анионные карбоновые кислоты и их соли, стеарат Na: C17H35COONa, олеат Na: C17H33COONa
катионные соли алифатических и ароматических аминов
амфолитные (в зависимости от pH проявляют катионные или анионные, активные свойства, т.е. имеют –COOH или –NH2 группы )
Поверхностная активность зависит от длины углеводородной цепи. Согласно правилу Дюкло-Трауба в гомологическом ряду жирных кислот при удлинение углеводородной цепи на 1 CH2 группу увеличивается g в 3-3,5 раза (3,2раз)
Поверхностная активность вещества характеризуется также величиной ГЛБ (гидрофильно-липофильного баланса ) – соотношение моль массы гидрофильной и гидрофобной групп. Согласно эмпирическим циклам Гриффита ГЛБ изменяется от 1 до 40,
ТЭА – 12 ; олеат Na – 18, олеиновые кислоты 1
Переход ПАВ из истинно растворимого состояния в коллоидное характеризуется ККМ (критическая концентрация мицеллообразования). Это минимальная концентрация ПАВ, которая характеризует образование концентрированного раствора. Солюбилизация – включение внутрь мицеллы частиц. Поверхностная активность олеата Na (мыла) составляет ~ 4*107 Гиббс, т.е. на межфазной поверхности его концентрация не будет в 30 тыс.раз больше, чем в объёме, а значит концентрацией ПАВ в объеме можно пренебречь.
Шишковским было введено эмпирическое уравнение, характеризующее изменение σ от концентрации ПАВ в растворе.
А, В – опытные константы
В – константа для всего гомологического ряда
А – константа изменения в соответствии с правилом Траубе.
Потом это уравнение было выведено теоретически из предположения А=Г и обосновано физическим смыслом обеих констант. Комбинируя уравнение Гиббса с уравнением Шишковского для растворов жирных кислот
А – константа адсорбционного равновесия.
Способность
твердых адсорбентов поглощать газы и
пары определяется состоянием и
однородностью его поверхности и степенью
пористости. Активность различных
участков поверхности неоднородна. Так
первые порции О2
на угле адсорбируются с
.
Получение пористых тел:
гидрозоль → коагуляция → сушка геля → дробления (d=0,1-7нм) так получают SiO2, Al2O3, MgO, цеолиты (0,4-1,1нм)
высокотемпературная активизация угля – сырца (торфа, костей) Т=700-900 ºС в атмосфере водяного пара, CO2 некоторых кислот (HCl, HNO3 и др)
Ni-гидрат выщелачивает Ni-Al сплавы.
5.5 Закон Генри (англ. уч. Уильям Генри 1836)
Общим термодинамическим уравнением адсорбции является адсорбционное уравнение Гиббса, связывающее σ и μ.
Однако, рассмотрение адсорбции как процесса взаимодействия адсорбата с адсорбентом требует учета различных механизмов. Наиболее просто этот вопрос решается для систем «г-ж» и «ж-ж» в связи с энергетической однородностью поверхности жидкости. В этом случае активности отдельных участков адсорбционного поля практически выравниваются. Для твердых тел присутствует сильная неоднородность как геометрическая, так и эмпирическая.
Пусть адсорбционный слой рассматривается как отдельная фаза:
Для объема
,
где К – const,
не зависящая от «с»
;
;
- коэф. распределения.
Эти уравнения выражают изотерму адсорбции в общем виде.
Если с→0, то
;
- закон Генри
Здесь КГ – const Генри
При разбавлении системы адсорбция пропорциональна концентрации с коэффициентом пропорциональности КГ
При разбавлении системы коэффициент распределения стремится к константе (КГ).
Для газов
С определенной концентрацией «со» начинается отклонение от закона Генри. Величина и знак отклонений определяется соотношением сил взаимодействия адсорбционных частиц между собой и с поверхностным слоем.
Если взаимодействие частиц адсорбата с поверхностным слоем больше, чем между собой, то А возрастает и Д возрастает → «1» и наоборот, тогда А уменьшается и Д уменьшается → «2»