Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физ свойства по вариантам.docx
Скачиваний:
4
Добавлен:
09.09.2019
Размер:
1.2 Mб
Скачать

Вариант 12

1. Влияние примесей и других структурных дефектов на удельное сопротивление металлов. причинами рассеяния электронных волн в металле являются не только тепловые колебания узлов решетки, но и статические дефекты структуры, которые также нарушают периодичность потенциального поля кристалла. Рассеяние на статических дефектах структуры не зависит от температуры. Поэтому по мере приближения температуры к абсолютному нулю сопротивление реальных металлов стремится к некоторому постоянному значению, называемому остаточным сопротивлением. Отсюда вытекает правило Маттиссена об аддитивности удельного сопротивления: ,

т.е. полное удельное сопротивление металла есть сумма удельного сопротивления, обусловленного рассеянием электронов на тепловых колебаниях узлов кристаллической решетки, и остаточного удельного сопротивления, обусловленного рассеянием электронов на статических дефектов структуры.

Исключение из этого правила составляют сверхпроводящие металлы, в которых сопротивление исчезает ниже некоторой критической температуры.

Различные примеси по-разному влияют на остаточное сопротивление металлических проводников. Эффективность примесного рассеяния определяется возмущающим потенциалом в решетке, значение которого тем выше, чем сильнее различаются валентности примесных атомов и металла – растворителя.

Помимо примесей некоторый вклад в остаточное сопротивление вносят собственные дефекты структуры — вакансии, атомы внедрения, дислокации, границы зерен. Концентрация точечных дефектов экспоненциально возрастает с температурой и может достигать высоких значений вблизи точки плавления. Кроме того, вакансии и междуузельные атомы легко возникают в материале при его облучении частицами высокой энергии, например, нейтронами из реактора или ионами из ускорителя. По измеренному значению сопротивления можно судить о степени радиационного повреждения решетки. Таким же образом можно проследить и за восстановлением (отжигом) облученного образца.

Большое влияние на удельное сопротивление металлов и сплавов оказывают искажения, вызываемые напряженным состоянием. Однако степень этого влияния определяется характером напряжений. Например, при всестороннем сжатии у большинства металлов удельное сопротивление уменьшается. Это объясняется сближением атомов и уменьшением амплитуды тепловых колебаний решетки.

Пластическая деформация и наклеп всегда повышают удельное сопротивление металлов и сплавов.

Термическая закалка приводит к повышению , что связано с искажениями решетки, появлением внутренних напряжений. При рекристаллизации путем термической обработки (отжига) удельное сопротивление может быть снижено до первоначального значения, поскольку происходит "залечивание" дефектов и снятие внутренних напряжений.

2. Определение плотности металлического образца. Оборудование: весы с укороченным коромыслом, набор разновесок, твердый образец произвольной формы, сосуды с дистиллированной водой и исследуемой жидкостью.

Расчет плотности исследуемого твердого образца ведется по формуле

В качестве жидкости берут дистиллированную воду, плотность которой известна В системе “СИ” она равна d=1000 гр/м3.

Вес тела в воде Q и в воздухе Р можно измерить в граммах, т.к. отношение - безразмерная величина и размерность измеряемой плотности образца

будет такая же, какова размерность d жидкости.

Для определения плотности твердого тела необходимо:

1. Взвесить исследуемый образец в воздухе (Р). Измерение произвести 2 раза. Перед каждым измерением проверять установку весов. Найти среднее значение Р.

2. Подвеситъ образец на тонкой проволочке к крючку левой чашки весов. Подставить под чашку весов сосуд с дистиллированной водой и погрузить в него тело. Следитъ, чтобы оно не касалось дна и стенок сосуда и было полностью погружено в воду. Определить 2 раза кажущийся вес тела в жидкости Q. Найти среднеарифметическое значение Q.

3. Зная d воды, по формуле

определить плотность исследуемого образца по средним значениям Р и Q.