Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ИМЭМ_лекции.docx
Скачиваний:
297
Добавлен:
08.09.2019
Размер:
2.29 Mб
Скачать

Проверка значимости коэффициентов регрессии

Экспериментальные исследования проводят, чтобы найти оценки коэффициентов полинома, который аппроксимирует функцию отклика. Значения коэффициентов регрессии имеют экономическую (или техническую) интерпретацию. Для линейной зависимости коэффициент bi (i=1,…,n) характеризует величину влияния фактора xi на отклик y, а именно bi равняется величине прироста отклика Δyi, если фактор xi увеличить на единицу, не изменяя при этом значения других факторов. Для модели с эффектами взаимодействия коэффициенты bi j характеризуют величину эффекта от взаимодействия факторов xi и xj. Поэтому важно проверить значимость коэффициентов уравнения регрессии. Если некоторые из них не значащие (статистически равны нулю), то их можно не учитывать, что упрощает модель. Теоретически значение некоторых коэффициентов могут равняться нулю. Убедиться в этом можно с помощью оценок коэффициентов регрессии, проверяя гипотезу об их значимости.

Значимость коэффициентов линейной регрессии проверяют отдельно по каждому коэффициенту с помощью критерия Стьюдента

Статистическая незначимость коэффициентов регрессии может быть обусловлена несколькими причинами, а именно:

1) соответствующий незначимому коэффициенту фактор не влияет на функцию отклика;

2) точка центра плана близкая к точке относительного экстремума функции отклика по переменной хі, т.е.

;

3) малый шаг варьирования факторов;

4) большая погрешность при определении функции отклика.

Прежде чем принимать решение по исключению из уравнения регрессии членов с незначащими коэффициентами, следует тщательно проверить, существуют ли упомянутые причины незначимости. Когда для такого решения есть все основания, то при ортогональном планировании признанный незначимым коэффициент можно отвергнуть без повторного вычисления других коэффициентов. Ведь при таком планировании коэффициенты регрессии независимы. После рассмотренной процедуры в математическом описании функции отклика остаются переменные, коэффициенты регрессии при которых являются статистически значимыми.

Значимость коэффициентов квадратичной регрессии проверяют по тем же правилам, что и линейной.

Проверка адекватности функции отклика

Описание функции отклика аппроксимирующими полиномами, коэффициенты которых определены по методу наименьших квадратов, может и не отвечать (быть неадекватным) наблюдаемым значением эндогенной величины. Поэтому перед использованием математической модели для анализа исследуемой системы следует убедиться в ее адекватности данным эксперимента.

Гипотеза адекватности модели проверяется оцениванием отклонения предусмотренных значений функции отклика от экспериментально найденных по числу повторений в экспериментальных точках факторного пространства. Для оценивания отклонений используется критерий Фишера.

Проверка гипотезы об адекватности возможна, когда число исследовательских точек факторного пространства больше числа членов аппроксимирующего полинома. Это необходимо учитывать как при определении структуры аппроксимирующего полинома, так и при выборе соответствующего типа факторных планов.

Если гипотеза об адекватности математического описания исследуемого процесса отвергается, то необходимо или перейти к более сложной форме уравнения регрессии, или уменьшить интервалы варьирования факторов в эксперименте. Например, если неадекватна линейная модель, то линейный полином необходимо дополнить, добавив к нему члены, которые отвечают эффектам взаимодействия. Тем не менее, при этом нужно будет реализовать несколько попыток в середине области планирования для проверки гипотезы об адекватности.

Уменьшение интервалов варьирования с целью достижения адекватности математической модели может вызвать уменьшение коэффициентов регрессии, а из-за этого возрастает риск принять ошибочную гипотезу о статистической незначимости некоторых коэффициентов. В общем случае интервал варьирования выбирается из условия обеспечения адекватности математического описания исследуемого процесса. Часто при выборе необходимых интервалов варьирования проводятся предварительные экспресс-попытки, в которых шаг варьирования составляет 0,05…0,3 диапазона изменения значений уровней факторного пространства.