- •Сумма углов треугольника
- •Углы при параллельных прямых и секущей. Вертикальные, смежные, односторонние, соответственные, накрест лежащие углы
- •Элементы треугольника. Высоты, медианы, биссектрисы
- •Четырехугольники. Сумма углов четырехугольника. Параллелограмм. Виды параллелограммов и их свойства. Ромб, прямоугольник, квадрат. Трапеция и ее свойства
- •Прямоугольник и его свойства
- •Трапеция и ее свойства
- •Окружность. Центральный и вписанный угол
- •Касательная к окружности
- •Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов
- •Вписанные и описанные четырехугольники
- •Правильный треугольник. Площадь правильного треугольника
- •Правильный шестиугольник
Прямоугольник и его свойства
Прямоугольник — это параллелограмм, у которого все углы прямые.
Диагонали прямоугольника равны.
В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы.
В прямоугольном треугольнике центром описанной окружности является середина гипотенузы.
Ромб и его свойства
По определению, ромб — это параллелограмм, все стороны которого равны.
Свойства ромба:
Диагонали ромба перпендикулярны.
Диагонали ромба делят его углы пополам.
Квадрат — определение и свойства
Квадрат — это прямоугольник, у которого все стороны равны.
Можно дать и другое определение квадрата:
квадрат — это ромб, у которого все углы прямые.
Получается, что квадрат обладает всеми свойствами параллелограмма, прямоугольника и ромба.
Перечислим свойства квадрата:
Все углы квадрата — прямые, все стороны квадрата — равны.
Диагонали квадрата равны и пересекаются под прямым углом.
Диагонали квадрата делят его углы пополам.
Площадь квадрата, очевидно, равна квадрату его стороны: S = a2.
Диагональ квадрата равна произведению его стороны на , то есть ,
Трапеция и ее свойства
Трапеция — четырехугольник, у которого две стороны параллельны, а две другие — нет.
Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны.
Если боковые стороны равны, трапеция называется равнобедренной.
Площадь трапеции равна произведению полусуммы оснований на высоту:
Отрезок, соединяющий середины оснований трапеции, называется средней линией трапеции.
Средняя линия трапеции параллельна основаниям, а длина ее равна полусумме оснований:
Окружность. Центральный и вписанный угол
Центральный угол — это угол, вершина которого находится в центре окружности.
Вписанный угол — угол, вершина которого лежит на окружности, а стороны пересекают ее.
На рисунке — центральные и вписанные углы, а также их важнейшие свойства.
Итак, величина центрального угла равна угловой величине дуги, на которую он опирается.
Значит, центральный угол величиной в 90 градусов будет опираться на дугу, равную 90°, то есть круга. Центральный угол, равный 60°, опирается на дугу в 60 градусов, то есть на шестую часть круга.
Величина вписанного угла в два раза меньше центрального, опирающегося на ту же дугу.
Также для решения задач нам понадобится понятие «хорда».
Равные центральные углы опираются на равные хорды.
Касательная к окружности
Касательная к окружности — прямая, имеющая с окружностью единственную общую точку.
Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов
Вписанный треугольник — треугольник, все вершины которого лежат на окружности.
Тогда окружность называется описанной вокруг треугольника.
Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.
Вокруг любого треугольника можно описать окружность, причем только одну.
Окружность вписана в треугольник, если она касается всех его сторон.
Тогда сам треугольник будет описанным вокруг окружности.
Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.
В любой треугольник можно вписать окружность, причем только одну.
Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.
S = p r
где p = (a+b+c) — полупериметр,
r — радиус окружности, вписанной в треугольник.
Есть и еще одна формула, применяемая в основном в задачах части С:
где a, b, c — стороны треугольника, R — радиус описанной окружности.
Для любого треугольника верна теорема синусов: