
- •Оглавление
- •§1. Статистическое описание систем с большим числом степеней свободы
- •§2. Метод статистической физики(элементы теории вероятностей)
- •§3. Микро- и макро- параметры системы.
- •§4. Свойство эргодичности системы.
- •§5. Два способа усреднения в статистической физике
- •§6. Понятие ансамбля систем
- •§7. Эргодическая гипотеза
- •§8. Равновесное состояние системы
- •§9. Время релаксации
- •§10. Квазизамкнутость и статистическая независимость подсистем
- •§15. Микроканоническое распределение Гиббса
- •§16. Каноническое распределение Гиббса
- •§17. Принцип возрастания энтропии
- •§18*. Статистическая сумма и её свойства
- •§19*. Функция распределения вероятностей по энергии и распределение Гаусса
- •§20. Квазиклассическое приближение в статистической физике
- •§21*. Распределение Максвелла как следствие канонического распределения Гиббса
- •§22. Использование распределения Максвелла для расчёта средних: , , ,
- •§23. Большое каноническое распределение
- •§24. Термодинамический потенциал Гиббса
- •§25. Распределение Ферми-Дирака
- •§26. Распределение Бозе-Эйнштейна
- •§27. Ферми и Бозе газы элементарных частиц
- •§28. Расчёт импульса Ферми для электронного газа при
- •§29. Расчёт энергии электронного газа при
- •§30*. Уравнение состояния идеального электронного газа при . Критерий идеальности электронного газа
- •§31*. Числовые оценки параметров , , , , и
- •Экзаменационные вопросы по курсу “Статистическая физика”
- •Экзаменационные задачи по курсу “Статистическая физика”
- •Экзаменационные вопросы и задачи по курсу “Статистическая физика” (минимум)
- •Решение задач по курсу “Статистическая физика”
- •Гамма-функция Эйлера
§20. Квазиклассическое приближение в статистической физике
Мы говорили, что состояние квантово-механической системы описывается каноническим распределением:
, где - номер состояния
Потом учли, что энергетические уровни близко расположены друг к другу и ввели вместо дискретного спектра – непрерывный:
Ввели функцию
В нормировке функции перешли к интегралу:
- это число состояний в интервале энергий
Здесь
- плотность состояний с энергией
на
единичный интервал энергии.
Мы вместо часто пользуемся функцией :
,
где
Функция
-
размерная. Величина
имеет размерность
,
тогда объёмчик
имеет размерность
.
Значит, функция
имеет размерность
Поэтому удобно ввести величину:
,
- число степеней свободы системы
Тогда:
(здесь
уже безразмерные величины)
При
имеем квазиклассическое приближение.
В этом случае
характеризует величину числа состояний
в интервале
.
Как же посчитать число состояний при переходе из фазового пространства в квазиклассическое представление?
В квантовой механике:
т.е. это точность, с которой определяется фазовая точка в фазовом пространстве.
Но фазовая точка определяет состояние, тогда это точность, с которой определяется состояние:
- это площадка, описывающая состояние.
-точнее
этого мы состояние не определим.
Более точные измерения дают:
- такая площадка выделяется на фазовую
точку (в случае, когда
- одна степень свободы).
- это объём, приходящийся на одно состояние
в квазиклассическом приближении, при
степенях свободы.
Тогда:
где - элементарный объём фазового пространства, а - объём на одно состояние, следовательно - число состояний.
Тогда в квазиклассическом приближении каноническое распределение выглядит так:
Множитель
возникает по следующим причинам:
В квантовом случае
- суммирование по числу состояний, и мы
учитывали нетождественные перестановки.
Но интегрирование по фазовому пространству
не чувствительно к тождественным
перестановкам – не выбрасываем их,
поэтому возник множитель
- учитывающий тождественные перестановки.
Это имеет место при переходе в
квазиклассическое приближение.
Замечание:
Принцип тождественности оказывает влияние только на расчёт статистического интеграла , при расчёте средних он не влияет.
Каноническое распределение для квантовых систем имеет вид:
- суммирование по квантовым состояниям
При переходе в квазиклассику, используя
переход
,
получаем для вероятности состояния
(здесь
индекс не проставлен):
где
и
,
- это вероятность того, что фазовая точка
с координатами
попадает в элементарный объём
в фазовом пространстве.
Мы писали:
под
понимаем
О
чевидно,
что константу
можно выкинуть, если рассчитывать
средние через вероятность, при переходах:
т.к. константа не влияет на расчёт средних.
Часто рассматривают случай, когда квазиклассичность имеет место не по всем степеням свободы, а лишь по некоторым. Тогда суммируем по квантовым степеням свободы и интегрируем по квазиклассическим степеням свободы, т.е. имеем «гибрид»:
и в этом случае имеется и статистическая сумма и статистический интеграл.