
МИНИСТЕРСТВО ЭНЕРГЕТИКИ И УГОЛЬНОЙ ПРОМЫШЛЕННОСТИ УКРАИНЫ
МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ УКРАИНЫ
СЕВАСТОПОЛЬСКИЙ НАЦИОНАЛЬНЫЙ ИНСТИТУТ ЯДЕРНОЙ ЭНЕРГИИ И ПРОМЫШЛЕННОСТИ
Кафедра КС
Лабораторная работа
по дисциплине «АПКС»
на тему: «построения соединений на односторонней печатной плате»
Вариант-8
Выполнил:
студент 544 группы
Пешкуров Р.О.
Проверил:
старший преподаватель
Барановский Ю.А.
\
г.Севастополь
2012г.
Цели:
Изучить методы трассировки печатных соединений;
Построить соединения на односторонней печатной плате.
Задание:
Разработать программную систему построения соединений на односторонней печатной плате. Исходными данными являются:
Описание цепи – содержит координаты всех контактов каждой цепи.
Параметры рабочего поля (монтажного пространства). Содержит размер рабочего поля и информацию о позициях, запрещенных для проведения соединений.
Краткие теоретические сведения:
Трассировка монтажных соединений - это задача геометрического построения на КП всех цепей данной конструкции, координаты начала и конца которых определены при размещении элементов. Следовательно, задача трассировки состоит в отыскании геометрически определенного способа соединений эквипотенциальных выводов схемы.
При этом необходимо учитывать различные конструктивно-технические ограничения: допускаются пересечения или нет, возможен ли переход с одного слоя на другой, сколько слоев отводится для трассировки, допустимые ширина проводников и расстояния между ними и т. д.
Алгоритмы трассировки существенно зависят от принятой конструкции и технологии изготовления РЭС.
Задачи трассировки можно разделить на две группы: трассировка проводных соединений и трассировка печатных (пленочных) соединений.
Трассировка проводных соединений в целом относительно более проста, поскольку отдельные сигнальные цепи электрически изолированы друг от друга. Поэтому в большинстве случаев она может быть сведена к оптимизации трасс соединений отдельных цепей. Наиболее распространенный подход к оптимизации трасс проводных соединений основан на использовании алгоритмов построения минимальных связывающих деревьев. Но и при проводном монтаже возникают проблемы совместной оптимизации соединений монтажных схем, определяемые такими факторами, как, например, электромагнитная совместимость проводов, наличие жгутов заданной формы и размера и другие. В подобных ситуациях задачи трассировки проводных соединений становятся по сложности и постановке близкими к задачам трассировки печатного монтажа.
Трассировка печатных и пленочных соединений непосредственно связана с согласованием метрических и топологических параметров схемы соединений и соответствующих параметров коммутационного поля (КП).
К метрическим параметрам схемы можно отнести размеры элементов, ширину проводников и допустимые расстояния между ними, предельно допустимые длины соединений и т. д.
Топологические параметры схемы определяются такими ее структурными свойствами, как планарность, т. е. возможность расположения на плоскости без пересечений, минимальное число пересечений и другие. Топологические параметры коммутационного поля КП определяются принятыми конструктивными способами устранения пересечений.
Общая характеристика методов трассировки
Проектирование схем соединений, иначе трассировка соединений, является одной из наиболее трудных задач в общей проблеме автоматизации проектирования электронных устройств. Прежде всего, это связано с многообразием способов конструктивно-технологической реализации соединений, каждый из которых обуславливает использование специфических критериев оптимизации при алгоритмическом решении задачи трассировки.
Исходной информацией для решения задач трассировки соединений являются список цепей, параметры конструкции элементов и коммутационного поля, а также данные по размещению элементов. Перед трассировкой соединений для каждой цепи схемы могут быть рассчитаны координаты расположения выводов на КП.
При алгоритмическом решении задача трассировки состоит в построении для всех цепей схемы оптимальных монтажных соединений.
Как уже отмечалось, задача трассировки имеет метрический и топологический аспекты.
Метрический аспект предполагает учет конструктивных размеров элементов, соединений и КП.
Топологический аспект связан с выбором допустимого пространственного расположения отдельных монтажных соединений на КП при ограничениях на число пересечений соединений, число слоев коммутационной схемы.
Алгоритмические методы проводных и печатных соединений существенно различаются.
Для проводного монтажа трассировка осуществляется с помощью алгоритмов построения минимальных деревьев соединений. Полная монтажная схема (таблица проводов) получается при последовательном применении указанных алгоритмов для отдельных цепей схемы. Далее, на основании анализа паразитных связей, в полученной монтажной схеме трассы отдельных соединений могут быть скорректированы.
Алгоритмические методы трассировки печатных (пленочных) соединений зависят от конструкции коммутационного поля и могут быть разделены на две основные группы.
К первой группе относятся так называемые топографические методы, в которых приоритет отдается метрическому аспекту задачи.
Вторая группа основана на графо-метрическом подходе задачи трассировки.
Для трассировки соединений предложено много алгоритмов, отличающихся скоростью и требуемым объемом памяти при реализации его на ЭВМ, а также качеством результата: волновой алгоритм и его модификации, алгоритмы трассировки по магистралям и каналам и ряд комбинированных алгоритмов. Эффективность применения каждого из них определяется рядом факторов: конструкцией коммутационного поля, ресурсами машинного времени и памяти ЭВМ, сложностью схемы соединений.
Для ряда конструкций электронных устройств разделение общей задачи проектирования топологии на два этапа - размещение элементов и трассировку соединений - не оправдано. Характерными особенностями таких конструкций являются нерегулярность расположения элементов и соединений, их разнотипность, наличие одного слоя коммутации.
Примерами могут служить односторонние печатные платы с микросхемами и навесными радиодеталями в устройствах аналогового типа, гибридные микросхемы и биполярные ИС с одним слоем коммутации. Основным критерием при разработке топологии таких схем является минимум числа пересечений соединений, а ограничением - площадь, занимаемая схемой.
В последнее время проводятся интенсивные исследования по применению графо-теоретических методов к проектированию топологии схем подобного рода, поскольку последовательные топографические методы трассировки в этом случае мало эффективны.
Графо-теоретические методы трассировки предполагают предварительный анализ планарности схемы, представленной в виде графа, и последующую ликвидацию пересечений с помощью технологических приемов. Окончательная фаза состоит в построении эскиза топологии схемы при рациональном распределении функции между конструктором и ЭВМ.
Трассировка проводных соединений
Монтажные соединения для цепей схемы представляют собой деревья.
Виды используемых деревьев определяются технологией выполнения соединений и схемотехническими требованиями. При автоматизированном конструировании схем проводного и печатного монтажа возникает задача построения минимальных деревьев соединений. Как правило, минимизации подлежит суммарная длина рёбер дерева.
Могут быть использованы и другие критерии оптимизации.
Задача построения минимального дерева формулируется следующим образом.
Пусть,
-
множество точек плоскости, соответствующих
выводам произвольной цепи.
Рассмотрим
полный граф
,
вершины которого
соответствуют
выводам цепи, а рёбра u U с приписанным
к ним весом
характеризуют
соединения между парами выводов. Значение
может
быть равно расстоянию между соответствующими
точками множества
.
В общем случае
может
представлять линейную комбинацию
нескольких характеристик соединения:
|
( |
где
-
коэффициенты;
-
некоторая характеристика соединения
.
Теперь
исходная задача сводится к определению
в графе
дерева,
включающего все вершины
и
имеющего минимальный вес рёбер.
Такое дерево называется минимальным покрывающим деревом или минимальным связывающим деревом.
Наиболее эффективен с точки зрения реализации на ЭВМ алгоритм Прима, предполагающий последовательное выполнение следующих принципов:
всякая изолированная вершина соединяется с ближайшей;
всякий изолированный фрагмент (связанная группа вершин) соединяется с ближайшей вершиной кратчайшим ребром.
Здесь под расстоянием между вершинами понимают значение , приписанное рёбрам соответствующего графа. Расстоянием вершины от данного изолированного фрагмента является минимум его расстояний до отдельных вершин фрагмента.
На
рисунке 1 расстоянием вершины
от
фрагмента
является
длина ребра
.
Рисунок 1- Определение расстояния от вершины до фрагмента (5, х)
Алгоритм построения минимального связывающего дерева для цепи с "n" выводами теперь может быть описан следующим образом:
для произвольного вывода цепи найти ближайший и провести соединение;
на каждом последующем шаге
из множества неподсоединённых выводов выбрать тот, который находится ближе остальных (в указанном выше смысле) к группе уже связанных выводов, и подсоединить его к этой группе по кратчайшему пути.
Построенное таким образом дерево будет иметь минимальную суммарную длину соединений.
Иногда
при построении связывающего дерева в
качестве значения
принимают
суммарную оценку, включающую как длину
ребра
,
так и число пересечений
этого
ребра с рёбрами уже построенных деревьев
|
( |
В частности, такая оценка используется при построении связывающих деревьев для схем печатного монтажа. В этом случае процедура Прима остаётся без изменений, а расстояние между выводами цепи рассчитывается по формуле выше.
Построение минимального дерева с ограничением на степени вершин может быть осуществлено при использовании процедур, основанных на методе ветвей и границ. Однако для практических целей предпочтение следует отдавать эвристическим алгоритмам.
В частности, можно использовать модифицированные принципы Прима:
всякая изолированная вершина соединяется с ближайшей, не соединенной с
другими вершинами;
всякий изолированный фрагмент соединяется кратчайшим ребром с ближайшей вершиной, не соединённой с другими вершинами.
Приведённые
в литературе исследования показывают,
что алгоритм, построенный на основании
этих принципов, приводит к получению
деревьев с длиной, превышающей минимальную
не более чем на 5% при числе выводов
.
Модифицированные
принципы Прима используются иногда при
параллельном наращивании нескольких
фрагментов дерева. На основании
проведённой серии экспериментов (
)
авторы приходят к выводу, что такой
способ даёт деревья с меньшей длиной
соединений последовательного наращивания
одного изолированного фрагмента.
В некоторых случаях, помимо ограничения на степени вершин связывающего дерева, задаётся начальная и конечная точка цепи.
Например, это имеет место при разработке монтажных схем для высокочастотных цепей, когда необходимо связать в определённой последовательности источник сигнала и несколько нагрузок. Тогда задача сводится к построению кратчайшего пути между двумя заданными выводами, проходящего через все остальные выводы цепи.
Данная задача родственна задаче о маршруте коммивояжера, но отличается от последней тем, что путь обхода должен быть разомкнутым и соединять две заданные точки. Следуя терминологии теории графов, возникает задача построения кратчайшей гамильтоновой цепи между заданными начальной и конечной вершинами.
Рассмотрим
алгоритм, дающий приближённое решение
этой задачи. Основу алгоритма составляет
-
шаговый процесс:
выбора кратчайших рёбер в полном графе ;
проверки каждого ребра на выполнение ограничений задачи;
составление из выбранных рёбер пути, соединяющего заданные точки.
Пусть, задано расположение точек
Рисунок 2 - Построение пути
Здесь
и
-
соответственно, начальная и конечная
точка пути.
Составим
упорядоченную по возрастанию длин
последовательность рёбер полного графа
.
Очередное
ребро
выбирается
по порядку из этой последовательности
при выполнении условий:
ребро не соединяет заданные конечную и начальную точки ( и );
при включении ребра в путь степень вершин, соединяемых этим ребром, не превышает допустимой (
для начальной и конечной точек и
для остальных точек);
ребро не образует цикла с рёбрами, уже включенными в путь;
при включении в путь любого ребра, кроме -го, начальная и конечная точки остаются несвязанными.
Условия 1 - 3 непосредственно вытекают из ограничений задачи. Условие 4 препятствует образованию тупиковых ситуаций, т.е. такого положения, при котором дальнейшее формирование пути становится невозможным - все подсоединенные точки, кроме начальной и конечной, имеют степень . Пошаговый процесс формирования пути изображен на рисунке.2.
Шаг
1. Выбираем ребро
,
т.к. оно удовлетворяет всем условиям
(рис.
2, а).
Шаг
2. Ребро
}
отбрасывается, т.к. не удовлетворяется
условие 1, а ребро
-
т.к. не удовлетворяется условие 4.
Выбирается ребро 4-5 (рис.
2, б).
Шаг 3. Выбирается ребро 3-4 (рис. 2, в).
Шаг
4. Ребра 3-5 и
-4
отбрасываются из-за невыполнения условия
3. Выбирается ребро
.
Результирующий путь
показан
на (рис.
2,г).
Если снять ограничение о крайних точках пути, то данный алгоритм приводит к более короткому пути 2 - 1 - 3 - 4 - 5. В этом случае алгоритм становится частным случаем модифицированного алгоритма Прима.
Как показано в специальной литературе, использование описанных выше процедур для построения связывающих деревьев с ограниченной степенью вершин обеспечивает вполне приемлемые результаты.